
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

19971124 006 
JL UxLÄxÄ 

BTIC QUALITY INSPECTED 8 

USING ARTIFICIAL NEURAL NETWORKS TO IDENTIFY 

UNEXPLODED ORDNANCE 

by 

Jeffrey A. May 

June 1997 

Thesis Advisor: Nelson D. Ludlow 

Approved for public release; distribution is unlimited. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for 
reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis 
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) 
Washington DC 20503.   

1. AGENCY USE ONLY (Leave blank) 2.   REPORT DATE 
June 1997 

3. REPORT TYPE AND DATES COVERED 
Master's Thesis 

4. TITLE AND SUBTITLE 
USING ARTIFICIAL NEURAL NETWORKS TO IDENTIFY UNEXPLODED 
ORDNANCE  

6. AUTHOR(S) 
May, Jeffrey A. 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

5. FUNDING NUMBERS 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the 
Department of Defense or the U.S. Government. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words) 
The clearing of unexploded ordnance (UXO) is a deadly and time consuming process.  The U.S. Government is 

currently spending millions of dollars to remove UXO's from bases that are closing around the world. Existing methods for 

detecting UXO's only inform the clearing team that a piece of metal is present, rather than the type of metal, either UXO, 

shrapnel, or garbage. A lot of time and money is spent digging up every piece of metal detected. This thesis presents the 

use of artificial neural networks to determine the type of UXO that is detected. A multi-layered feed-forward neural 

network using the back propagation training algorithm was developed using the language Lisp. The network was trained to 

recognize five pieces of ammunition. Results from the research show that four out of five pieces of ammunition from the 

test set were identified with an accuracy of .99 out of 1.0. The network also correctly identified that a tin can was not one 

of the five pieces of ammunition. 

14. SUBJECT TERMS 
Unexploded Ordnance, Artificial Neural Networks 

17. SECURITY 
CLASSIFICATION OF REPORT 
Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 
Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 
Unclassified 

15. NUMBER OF PAGES 
137 

16. PRICE CODE 

20. LIMITATION OF 
ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 



11 



Approved for public release; distribution is unlimited 

USING ARTIFICIAL NEURAL NETWORKS TO 
IDENTIFY UNEXPLODED ORDNANCE 

Jeffrey A. May 
Captain, United States Army 

B.S., Creighton University, 1988 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN COMPUTER SCIENCE 

from the 

NAVAL POSTGRADUATE SCHOOL 
June 1997 

Author 

Approved by: 

Nelson D. Ludlow, Thesis Advisor 

Robert B. McGhoe, Second Reader 

Ted Lewis, Chairman 
Department of Computer Science 

iii 



IV 



ABSTRACT 

The clearing of unexploded ordnance (UXO) is a deadly and time consuming 

process. The U.S. Government is currently spending millions of dollars to remove 

UXO's from bases that are closing around the world. Existing methods for detecting 

UXO's only inform the clearing team that a piece of metal is present, rather than the type 

of metal, either UXO, shrapnel, or garbage. A lot of time and money is spent digging up 

every piece of metal detected. This thesis presents the use of artificial neural networks to 

determine the type of UXO that is detected. A multi-layered feed-forward neural network 

using the back propagation training algorithm was developed using the language Lisp. 

The network was trained to recognize five pieces of ammunition. Results from the 

research show that four out of five pieces of ammunition from the test set were identified 

with an accuracy of .99 out of 1.0. The network also correctly identified that a tin can 

was not one of the five pieces of ammunition. 
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I. INTRODUCTION 

A. GOALS 

The goal of this thesis is to determine if an artificial neural network is capable of 

identifying unexploded ordnance. The intent is to develop an artificial neural network to 

correctly identify a limited set of unexploded ordnance. A successful neural network will 

aid in the clearing of United States military bases by identifying those detection's that are 

unexploded ordnance and should be excavated by expert EOD personnel, from those that 

are not unexploded ordnance and can be removed by less trained personnel. 

B. BACKGROUND AND MOTIVATION 

As the military continues to scale down, the job of turning the land over to the 

civilian sector is a labor intensive process. One of the biggest problems is the clearing of 

unexploded ordnance (UXO) from the bases. It is a time consuming and expensive job to 

dig up every piece of metal that returns a signal on the detection device. The metal 

detected could be an actual round or fragments from exploded rounds as well as junk that 

may be in the area. 

The Department of Defense has recently approved two organizational structures 

to confront the challenge of UXO remediation and wide-area de-mining. The objective of 

the first committee is to develop a fully coordinated requirements driven research and 

development program for countermine, de-mining, site remediation, range clearance, and 

explosive ordnance disposal. Within the first committee there is a specific group focused 

on detection technology. The second committee will focus on current technologies and 

ways to improve in the future. One of the phases will examine current UXO remediation, 

active range UXO clearance and explosive ordnance disposal efforts. So as you can see 

the UXO problem is real and getting a lot of attention in today's military. 

At the Naval Postgraduate School a team has been put together to develop an 

autonomous vehicle or robot, which will survey the area for UXO's.   The autonomous 



vehicle, called Shepherd, is well under way. Shepherd is a four wheel independent 

steering, autonomous vehicle. The four wheel independent steering allows Shepherd a 

high level of mobility. The vehicle needs the means to locate and classify various 

unexploded ordnance via standard sensors, such as a magnetometer. This is the basis of 

my thesis. 

C. RESEARCH QUESTIONS 

This thesis will examine the following research areas: 

• Are artificial neural networks able to correctly identify, within a certain degree 

of precision, various types of unexploded ordnance both surface laid and 

buried? 

• What type of neural network architecture is best for the job? 

• What is the training set to be used in the training of the neural network? 

• With what precision are the objects correctly identified? 

D. ORGANIZATION 

Chapter II provides a general overview of traditional and current techniques for 

identifying unexploded ordnance and gives an introduction to the artificial neuron, types 

of neural networks and training methods. Chapter III covers the process of choosing a 

network architecture and an in depth discussion of the feed-forward and back-propagation 

algorithm used for the neural network. Chapter IV presents my artificial neural network 

design for the UXO project as well as what ammunition was used and how the data was 

gathered. In Chapter V the results of testing the neural network are presented, and 

Chapter VI summarizes the thesis. 



II. BACKGROUND 

A. INTRODUCTION 

The old saying that "time is money" holds true for the clearing of unexploded 

ordnance. The methods used to accomplish range remediation, both in the past and 

recent, are time consuming. It takes time to dig up every piece of metal that returns a 

signal. This time costs the government a lot of money. If we can identify objects that are 

ordnance from objects that are not, such as tin can or shrapnel, we can remove objects 

safely. To EOD personnel, every piece of unexploded ordnance on the ground is 

potentially deadly and great caution is taken to avoid injury. Being able to determine 

unexploded ordnance from junk can save lives as well as time and money. 

In this thesis the term unexploded ordnance refers to projectiles, either tube 

launched or rocket assisted, bombs dropped from aircraft, and thrown ammunition, such 

as hand grenades. Excluded from this list are land mines. Land mines present a whole 

different challenge to range clearing efforts. In this chapter the techniques used to clear 

unexploded ordnance are addressed. Then, the fundamental of artificial neural networks 

will be introduced in order to provide the reader with the background necessary to make 

the research more understandable. 

B. UNEXPLODED ORDANCE IDENTIFICATION 

1. Traditional Methods 

The traditional method of clearing unexploded ordnance consists of personnel 

using some type of metal detector to detect the general location of ordnance and then 

marking the spot with a flag. The next step is digging up the ordnance and removing it 

from the site. As you can tell, a lot of unnecessary metal is dug up and a lot of time is 

wasted. This method is both dangerous and expensive. However, for many years it was 

the only method available. With the massive number of acres of land from closed bases 



needing cleared and an ever decreasing defense budget, new methods of UXO removal 

must be developed. 

2. Existing Methods 

The devices for detecting unexploded ordnance have improved over the years. 

For the most part however, the methods for clearing UXO's have not. Many government 

contractors are still using the traditional method explained above. The most common 

technique used to deter the cost of sweeping an entire base is some form of sampling. 

Areas to be cleared are assigned grid zone designators. The size of a grid may vary 

depending on the terrain, but a 100 x 100 foot grid is a good starting place. This grid is 

then broken down into sub-grids or lanes that are randomly chosen for sweeping with a 

magnetometer. Any detection's are flagged for removal. The metal removed is classified 

as either a UXO, shrapnel, or trash. A determination on whether to clear an area is made 

based upon, among other things, the concentration of UXO classified objects in the sub- 

grid or lane. 

Some of the other factors taken into account are the history of the area, what will 

the land be used for, and location of the land. The history of a grid must be investigated 

before one can be chosen. The history looks at the type of rounds fired into the area, 

where the rounds were fired from, and where they were to impact, as well as a margin of 

error based on the capabilities of the round. The capabilities of the rounds also include 

the penetrating depth of the round. This way the clearing team knows up to what depth to 

clear. What the land will be used for also determines the clearing depth. Construction in 

the area may only penetrate to a certain depth, therefore clearance beyond that depth is 

wasting time and money. The location of the land also plays an important role. If the 

land is in a residential area, the number of sub-grids or lanes sampled may be greater than 

that of a remote area with thick brush that will not be used for anything in the near future. 

Recent statistical computer models have aided in the grid zone technique by 

allowing the clearing team to randomly sample the detection's within a sub-grid or lane. 



The models compute concentration of UXO's based on a formula and the data from the 

random samples. A computer aided tool know as the Ordnance and Explosives 

Knowledge Base (OE-KB) is being developed by the U.S. Army Engineer Center in order 

to build a knowledge base on the characteristics of detection's [Ref. 1]. Some of these 

characteristics include the sensor used, the type of round, the depth, the angle, and the 

type of soil. Detection readings are fed into the database in order to attempt to determine 

the type and depth of the ammunition. OE-KB uses sophisticated mathematical 

algorithms, computerized pattern-recognition, and data fusion (the combination and 

comparison of data-sets from two or more different types of geophysical instruments) to 

help differentiate between munitions and non-munitions and estimate depth of burial 

[Ref. 1]. 

The most common type of metal detector used is the magnetometer. A 

magnetometer was used to gather the input data for the neural network in this thesis. The 

GA-72Cd Magnetic Locator, made by Schonstedt Instruments Company, detects the 

magnetic field of iron and steel objects [Ref. 2]. The magnetometer has an audio and 

digital output, and a polarity indicator to help pinpoint the target and even determine it's 

orientation. Test have shown that magnetometers detect ferrous munitions and are 

effective to depths of 2 or 3 meters [Ref. 1]. 

In a paper published by Matthew Gifford and John E. Foley for Sanford Cohen 

and Associates Inc., a neural network is used to identify the weight and depth of the UXO 

[Ref. 3]. A dig team recorded data obtained from a Geonics EM-61 pulsed induction 

sensor. This information was then fed into a multi-layered feed-forward neural network 

to determine the weight and depth of the object. The network used back-propagation to 

train on 107 items and then was tested on 40. The outcome was a 77% detection rate 

with a cost savings of 74% over the Amag and flag technique. This study seems to prove 

that the use of a neural network to classify and reduce UXO remediation is a valid option. 

The problem with this research is that any piece of metal that has a similar mass as an 

UXO and is at the appropriate depth will be dug up. 



3.        Artificial Neural Network Approach 

An artificial neural network is good for pattern recognition and classification 

problems. With the use of a magnetometer, UXO's produce a signal that varies across a 

grid. The grid can be fed into a neural network. This pattern of signals can be classified 

by the neural network as a type of UXO that the network has been trained to recognize. 

That is the goal of this thesis. Given a grid of inputs, say 60 X 60 cm, take these values 

returned by the magnetometer and train a network to recognize certain patterns that relate 

to several types of UXO's. If successful, the artificial neural network will be able to 

identify UXO's that need to be removed versus returns from a magnetometer that could 

just be scrap metal. This would save a lot of time and money. To understand how an 

artificial neural network can accomplish this mission, the following section will give an 

overview of how an artificial neural network works. 

C.       ARTIFICIAL NEURAL NETWORKS 

What are artificial neural networks and why are they used? Artificial neural 

networks are an attempt to make computers use the same reasoning as humans. 

Computers use the Von Neumann architecture that is very efficient for number crunching. 

Computers greatly out perform humans in this area and hence, their popularity. When it 

comes to perceptual problems, humans are way out in front of computers. Table 2.1 

points out some of the key differences between computers and the human brain. Why use 

an artificial neural network? Neural networks are a good solution to a problem that is not 

well defined. If the input data may vary for the same problem, then a neural network is 

much more forgiving than a traditional algorithm. A neural network also promotes the 

ability to use parallel processing. From a purely scientific stand point, one reason to use 

a neural network is an attempt to model the human decision making process. The key to 

human success lies in the biological neuron. 



»      d2Mttk~^i:~zt 

Processor Complex Simple 

High speed Low speed 

One or a few A large number 

Memory Separate from a Integrated into processor 

processor Distributed 

Localized Content addressable 

Non-content addressable 

Computing Centralized Distributed 

Sequential Parallel 

Stored programs Self-learning 

Reliability Very vulnerable Robust 

Expertise Numerical & symbolic 

manipulation 

Perceptual problems 

Operating Well defined Poorly defined 

Environment Well constrained Unconstrained 

Table 2.1: Von Neumann computer versus biological neural system [Ref. 4]. 

1.   The Biological Neuron 

A neuron is a cell that processes information in humans. Figure 2.1 shows a 

picture of a neuron and all of its components. The neuron is made up of a cell body 

(soma), branch like Figures called dendrites and an axon which also protrudes from the 

soma. The dendrites are the receivers of signals from other neurons while the axon is the 

transmitter of signals to other neurons. The synapses are between the dendrites of one 

neuron and the axon of another neuron.   The synapses release neurotransmitters that, 



depending on their type, can excite or inhibit the signal.   The synapses are the key to 

learning in the neuron. They can be adjusted based on their experience. 

In order to understand the magnitude and complexity of the neurons in a human, 

the cerebral cortex is examined. The cerebral cortex is about 2 to 3 millimeters thick with 

a surface area of about 2,200 cm2, about twice the size of a standard computer keyboard 

[Ref 4]. The cerebral cortex contains about 10" neurons, which is approximately the 

number of stars in the Milky Way [Ref. 4]. Each neuron is connected to approximately 

103 other neurons and the human brain contains roughly 1014 to 1015 interconnections 

[Ref. 4]. 

The neuron operates at a speed of a few milliseconds. From the time it takes a 

human to recognize an object, it has been determined that the perceptual decisions cannot 

take more than 100 or so serial steps [Ref. 4]. Therefore, the brain must run parallel 

processes that are about 100 steps long for such a task. In the same research it was shown 

that only a very small amount of information was transferred in this time. Therefore it is 

believed that critical information is not transmitted directly, but captured and distributed 

in the interconnections [Ref. 4]. As you will see, this is the basic idea behind the 

artificial neural network. 

Figure 2.1: A biological neuron. 



2.        The Artificial Neuron 

The artificial neuron attempts to model the biological neuron using a computer. 

Figure 2.2 shows the layout of an artificial neuron. There are three basic components: 

• The synapse is modeled by a weight associated with that connection to the 

neuron and an input signal from the previous neuron or source. Here, the 

weight and the input signal are multiplied to provide an input value for that 

connection. The key to a successful neural network lies in the value of the 

weights associated with each neuron. Chapter IV will discuss how the back- 

propagation algorithm assigns these weights. 

• The dendrite provides the input from the synapse to the soma. This is the 

connection leading into the neuron. Here the artificial neuron has an adder 

which computes the summation of the weighted inputs from all the synapses. 

• The soma is modeled by an activation function for limiting the amplitude of 

the output signal from the neuron. The activation function is a nonlinear 

function. Four typical types of activation functions are the threshold, 

piecewise linear, sigmoid and Gaussian functions shown in Figure 2.3. The 

threshold function is an on-off type of function. This means the neuron will 

only fire at the vertical on the graph. The piecewise linear function displays a 

little better firing distribution. Sigmoid functions, such as the logistics 

function, are the most widely used activation functions. They exhibit a strictly 

increasing function that provides the desired asymptotic properties [Ref. 4]. 

By inspection, it is easy to see that the Gaussian function is increasing the 

intensity with the higher negative weights and decreasing intensity with the 

higher positive weights.   The output range of the neuron is a closed interval 

[-1,1]- 



Figure 2.2: McCuIloch-Pitts model of a neuron [Ref. 4]. 

threshold piecewise linear sigmoid Gaussian 

Figure 2.3: Activation Functions. 

A neuron can be described in mathematical terms by the following equation: 

( P ^ 
yk = cp   X wJkXj 

V j=i ) 

Where cp is the activation function, wjk is the specific weights associated with that neuron 

and Xj is the signal input for that neuron.  The value yk is the value that is produced by 

that particular neuron which should be between 0.0 and 1.0. This value is the passed on 

to other neurons as the new input and the process starts all over again. This is the basic 

idea of how a neural network is formed. 

3. Artificial Neural Networks 

The way in which one combines neurons to produce an answer to a problem is 

called an artificial neural network. The number of input values determines the number of 

input neurons. There are several ways you can connect the next layer, or hidden layer, 

neurons to the input layer neurons.  Several layers of neurons can be used. The number 

10 



of output neurons depends on the number of possible outcomes for a particular problem. 

The trick becomes knowing how many neurons to have in the hidden layer and the 

number of hidden layers to have in a network. 

The way a neural network solves a problem can be traced to the idea of linear 

separability. Figure 2.4 shows the graph of an AND function and the line that is drawn 

by the neural network [Ref. 5]. The correct answer has been separated out from the 

wrong answers by the network. Notice that everything above the line will exhibit 

characteristics of the correct answer. The equation of a line is Ax + By + C = 0. This 

equation can be translated into the following equation from the AND neural network: 

xiWi + X2W2 + B = 0 

where x, and x2 are the input signals 1 and 0, and Wj and w2 are the weights associated 

with these neurons. B is a bias that is thrown in to help separate the problem. 

When a problem is linearly inseparable, then multiple layers are needed to 

separate out the answer with multiple lines. Figure 2.6 shows the Exclusive-OR problem. 

Notice that two lines are needed to separate out the answer in this problem. The first 

hidden layer separates out the two correct answers. In this case, the output layer 

combines the correct outputs and separates true from false with a single line. By adding 

more layers the correct responses become more defined. However, it is argued that any 

problem can be solved with a three layer network [Ref. 6]. 

A three layer network is defined by the input layer, consisting of the input values, 

the hidden layer, consisting of neurons that separate the problem, and an output layer, 

consisting of neurons that produce the desired answers. The desired answer is defined by 

the training set. Let's say your neural network is designed for character recognition. The 

number of possible outputs is 26, one for each letter in the alphabet. Therefore, your 

output layer will have 26 neurons, each providing a value for the character that it 

represents. This value should be high for the neuron associated with the correct input and 

low for the rest of the neurons.     For example, if the character 'C is given, it should 

11 



produce a high output (close to 1.0) for output C, and a very low output (close to 0.0) for 

the other 25 outputs. 

Figure 2.4: Classification line for logical AND[Ref. 5]. 

Figure 2.5: The figure on the left shows how the hidden layer separates the inputs. The figure on the 
right shows how the output layer makes the problem linear separable [Ref. 5]. 

4. Learning 

There are three types of learning paradigms when it comes to neural networks: 

• Supervised learning separates the training from the environment. The network 

must be taught to recognize the inputs for which it has been designed to 

produce an output. This is accomplished by developing a training set of 

samples of the environment for which the network is to perform. The network 

is then trained in an iterative process, via a training algorithm, until the 

12 



appropriate response is produced to the entire training set. The appropriate 

response is defined by the designer as an acceptable level of error. The means 

in which to reach the acceptable error is known as the steepest descent 

problem. Chapter III will go into great detail on the steepest descent problem. 

Once the designer is satisfied, the training algorithm is removed from the 

network. Now the network is tested on the environment. The network is now 

unsupervised and working on its own with an embedded knowledge from the 

training algorithm. 

• Unsupervised learning is the exact opposite of supervised learning. There is 

no teacher. The network finds correlations between patterns in the input data 

and groups those correlations into categories. By comparing new input data to 

previous ones, the network can categorize the data and produce an answer. 

• Reinforcement learning has no teacher to give direction to the answer. It must 

probe the environment to gain knowledge of the direction to travel in order to 

obtain the correct answer. 

There are four learning rules that span the above learning paradigms: 

• Error-correction rules basically perform as stated above in the supervised 

learning paradigm example. The weights in the network are adjusted in 

accordance with an output error. The desired output is subtracted from the 

actual output and this value is called the error for that run through the neural 

network. All of the weights are adjusted to decrease this error by a 

predetermined value each time through the network. Mathematically speaking 

ek = dk- ak,      Awjk = ß*e*i, wjk = wjk + Awjk 

given k = neuron, w = weight, i = input value, ß = predetermined step value, 

e = error, d = the desired value, and a = the actual value. 

• Boltzmann learning applies to Boltzmann machines in which the neurons 

operate in a binary manner, +1 for the on state and -1 for the off state [Ref. 4]. 

The neurons are further divided into visible neurons, which interact with the 

13 



environment, and hidden neurons which do not. The machine itself operates 

in two modes: clamped, in which the visible neurons are set in there current 

states determined by the environment, and free, in which both the visible and 

hidden neurons are allowed to operate freely. The objective of Boltzmann 

learning is to adjust the connection weights so that the states of the visible 

units satisfy a particular probability. Weight changes are denoted by 

Aw = ß(pjk - pjk) 

where ß is the learning rate, and pjk,pjk are the correlation's between the states 

of units j and k when the network operates in the clamped and free mode, 

respectively [Ref. 4]. 

Hebbian rule is base on the fact that if two neurons are activated 

synchronously then the weight is strengthened. If the two neurons are 

activated asynchronously then the weight is weakened. 

Awjk = ß*oj* Ok,        Wjk = wjk + Awjk 

where wjk is the weight from neuron j to neuron k, o is the output of the 

neuron, and ß is the learning rate. This learning rule is highly dependent on a 

recurring structure which will be discussed later. 

Competitive learning systems group the input data into categories. Based on 

the input, the correct group is stimulated and only those units fire. This is 

known as the winner-takes-all method. The output of the winner is set to 1 

and all other nodes are set to 0. Only the weights of those that fire are 

updated. The good weight values from the input vectors of the winner are 

distributed equally over the entire set of input weights associated with the 

winning neuron. 

\ß(Xk - Wjk) 
2_iwjk = l,       Awjk = <Q 

14 



Where wjk is the weight, j is the neuron the weight is coming from, k is the 

neuron, xk is the input value, and ß is the learning rate. This has the overall 

effect of moving the weight vector of the winning neuron toward x [Ref. 7]. 

5.        Network Architecture 

There are many types of neural network architectures. Figure 2.6 provides a 

layout of how they are broken down. The recurrent networks are ones in which learning 

is based on associative memory. The loops that occur in the network act as a state that 

the network enters based on the input. Recurrent networks are dynamics systems. Each 

neuron is dependent on it's previous output due to the feedback nature of the network. In 

this manner they are also able to store information. The feed-forward networks contain 

no loops. They have no memory. This means that the value produced does not rely on 

previous inputs. The learning is supervised because it is based on the training set. Feed- 

forward networks are static in the sense that once they have been trained, they produce 

one set of output values for one set of input values. I will briefly discuss the types of 

networks presented in Figure 2.6 that have not already been discussed in the learning 

section. 

Neural Networks 

Feed-forward networks Recurrent/feedback networks 

' ' \ 4 ' ' ' ' 

Single-layer 
Perceptron 

Multi-layer 
Perceptron 

Radial Basis 
Networks 

Competitive 
Networks 

Kohonen's 
SOM 

Hopfield 
Network 

Art 
Models 

Figure: 2.6: A taxonomy of feed-forward and recurrent/feedback networks [Ref. 4]. 

This thesis concentrates on the feed-forward type of neural networks. The most 

widely used type of feed-forward network is the multi-layered feed-forward neural 

network.   The performance of this network is exactly as the name implies.   The input 
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signals are fed into the network and multiplied by the weights assigned to the signal. The 

weighted sum of each neuron is then fed to an activation function which produces the 

output value of the neuron. These values are then fed to the next layer and the process is 

repeated until there are no more layers. The neuron in the output layer with the greatest 

value represents the pattern that was fed into the network. The whole key to this network 

are the values of the weights. The algorithm used to adjust the weights is the back- 

propagation algorithm. 

The radial basis functions (RBF) networks are a special form of the multi-layered 

feed-forward network with two layers, a hidden layer and an output layer. The hidden 

layer is a nonlinear mapping from the input values to the hidden layer. A nonlinear radial 

basis function is used as an activation function in the hidden layer. A linear combination 

of RBFs is used to convert the hidden layer to the linear output layer. The RBF has the 

following property: 

F(x) = Wi(pQ\x-x,\\) 

where {<p(\\x - XJH) | i = 1, 2, ,N} is a set of N arbitrary (generally nonlinear) RBF 

functions and || . || denotes a norm that is usually taken to be Euclidean [Ref. 7]. 

RBF networks are used for function approximation, pattern classification, 

prediction and control problems. 

The Kohonen's Self Organizing Map (SOM) artificial neural network models the 

fact that in the biological neural network environment tends to strengthen connections 

that are close in physical proximity. The SOM model uses a two dimensional output grid 

of neurons that are connected to their neighbors. All of the inputs are connected to each 

neuron in the 2-dimensional grid. Figure 2.7 shows the set-up of a Kohonen SOM. The 

sum of each set of input weights from any input node total one. As the inputs are fed to 

the network, the neuron with the maximum sum of the weight values wins. This neuron's 

weight values are updated as are the weights of the neurons that are a neighbor of the 

winning neuron.  The weight values of the input nodes are then normalized again.  The 
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weights will eventually spread out and the neighborhoods will become sensitive to certain 

input patterns. 

Kohonen's SOM has been successfully applied in the areas of speech recognition, 

image processing, robotics, and process control [Ref. 4]. 

output nodes 

» 

inputs 

Figure 2.7: Kohonen self organizing map [Ref. 8]. 

Adaptive resonance theory models (ART) are able to continually accept new 

patterns until some threshold is met, namely the number of output nodes. ART models 

use the competitive learning rule so they are fully connected, both forward and backward, 

networks that start out with none of the output neurons producing any pattern. As inputs 

are fed to the network, output nodes are assigned to the new input. The input is first 

compared against the stored patterns and the closest match is selected for further 

comparison against a vigilance. A vigilance is a predetermined value between 0 and 1. 

The closer to one the closer the match must be, the closer to zero the weaker the match is 

allowed to be. The two patterns are compared by computing the dot product of the 

patterns and dividing by the number of ones in the input pattern. If the ratio is greater 

than the vigilance then the pattern is considered similar and the stored pattern is updated. 

If the ratio is not greater than the vigilance and there is a free output node, it is assigned 

to the new pattern. If there is no free output node then nothing is changed. 

One of the main problems with this model is that noisy input could create more 

than one node that represents the same input. ART models are used for categorization 

problems. 
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D.       SUMMARY 

The clearing of military bases is an inherently dangerous and costly mission. The 

traditional method of digging up every piece of metal that returns a signal from the metal 

detector needs to be replaced with a more efficient method. Artificial neural networks 

possibly present a cost efficient method of dealing with UXO's. At the center of all 

neural networks is the model of the biological neuron. There are many types of neural 

network architectures that use various types of learning rules to solve a variety of 

problems. Networks use supervised (use a teacher), unsupervised (learn on there own) or 

reinforcement learning (a hybrid of the two). They are either associative (have memory) 

or non-associative (no memory). Neural networks are used to solve problems such as 

pattern classification, categorization, function approximation, prediction, and data 

analysis. In range remediation there are three problems: detection, localization, and 

classification. The problem of determining what type of ammunition is on the ground is a 

classification problem. A multi-layered (three layer) feed-forward neural network with 

supervised learning (back-propagation) for pattern classification was chosen for this 

thesis. The next chapter will present the process by which the neural network design for 

UXO detection was chosen as well as the details of the network design. 
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III. ARTIFICIAL NEURAL NETWORK DESIGN 

A.       CHOOSING A NETWORK DESIGN 

Once the decision has been made to use a neural network to solve a problem, the 

next step becomes choosing an architecture to fit the needs of the problem. There are 

several types of neural networks for every type of problem. Table 3.1 shows a few of the 

types of neural networks and what types of problems they solve. Paradigm, learning rule, 

architecture, and learning algorithm were all discussed to some extent in Chapter II. The 

goal of this thesis is to determine the type of ammunition presented to a neural network as 

recorded from a magnetometer. This is a classification problem, so the focus will be on 

what type of classification neural network will best suit the needs of the UXO project. 

There are several factors to take into account. 

1.        Design Factors 

a.        Speed of Execution 

As in all real time systems, speed is at the top of the priority list. Speed of 

execution refers to the time it takes a neural network to determine what kind of object the 

input data represents. This is not to be confused with the rate at which a neural network 

learns. Learning rate is the time it takes a network to be trained to recognize a set of 

inputs. Learning rate will be discussed later. The more connections there are the slower 

the network will operate. All of the associative memory networks require connections to 

previous nodes in order to store the information on a pattern. This will slow the 

performance of the network. A strictly feed-forward network will limit the number of 

connections needed to accomplish the mission. In order for this project to perform 

correctly, the neural network more than likely will be implemented in hardware. A 

hardware implementation can speed up the execution speed by as much as 1000 times. 
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b. Generalization 

Generalization refers to the type of input. If the input is the same as the 

input that the network was trained on, then generalization is not that important. But, if 

the input is something the network has not seen before, then the ability of the network to 

generalize will make or break the system. In order to ensure the former case, the network 

would have to be trained on an exhaustive list of possibilities. This is usually not 

possible. The latter case may lead to the network failing when an unknown is introduced. 

If your network is designed to generalize, it may try to give an answer for something it 

really should not recognize. As long as it is a low percent of probability there should not 

be a problem. 

c. Scalability 

Some systems are able to add new patterns without any rewriting of code. 

But, there is a finite number of patterns that can be added to any network. The more 

patterns that are programmed in to a network, the more connections there are and the 

slower the network will run. A designer must determine if the set of possibilities are 

relatively small or infinite in size. 

d. Learning Speed 

Learning speed are a major area of concern in any neural network 

architecture. It can take several iterations for a training algorithm to converge on the 

optimal solution. Sometimes it may even take several restarts to get to the optimal 

solution without becoming stuck in a local minimum. A network that takes a longer time 

to train will more than likely come up with a better optimal solution than a fast training 

algorithm. As long as training time does not interfere with the execution time, learning 

speed should be a matter of quality not quantity. Chapter II covered some of the types of 

algorithms that determine the speed with which a network will learn. Different 

architectures use different training algorithms. 
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e.        Number of Layers 

This is a topic of great interest for any designer of a network. What is the 

magic number of layers and neurons per layer? Trial and error seems to be the best 

solution. There are however, a few guidelines for determining these parameters. The 

number of layers in a network seems to vary according to the problem at hand. Figure 

3.1 shows the ability of different numbers of layers to solve different levels of complex 

problems. When dealing with the number of neurons in a layer, one method is having 

more than three times as many nodes in the second layer as in the first layer [Ref. 8]. 

Figure 3.1 gives the definition of a three layer network as one with three 

layers of neurons. Some books present the two layer network from Figure 3.1 as a three 

layer network because the input values are counted as a layer. While the input layer does 

not perform any computation, it is still considered a layer. This thesis refers to the two 

layer network in Figure 3.1 as a three layer network. In general there is a clear advantage 

to using a single hidden layer of non-linear neurons between the input and output layers, 

but having more than two hidden layers in a system with non-linearity does not increase 

their computational power [Ref. 9]. It is said that a three layer network can solve any 

problem [Ref. 10]. 

Structure 

A 
Single layer 

Two layer 

Three layer 

Description of 
decision regions 

Half plane 
bounded by 
hyperplane 

Arbitrary 
(complexity 
limited by 
number of hidden 
units) 

Arbitrary 
(complexity 
limited by 
number of hidden 
units) 

Figure 3.1: A geometric interpretation of the role of hidden units in a two-dimensional space [Ref. 4] 
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/ Connectivity 

A fully connected network produces a lot of overhead and may cause the 

system to slow down. Networks that are not fully connected are feature extraction 

networks. Feature extraction may be necessary with a large input set. The number of 

connections and time to produce an answer, may be so great with a fully connected 

system that feature extraction may be necessary. Defining features and how they tie in 

can be a complex problem. A fully connected model is easier to follow. 

Supervised Error-correction    Single or 
multi-layer 
perceptions 

Boltzmann 

Hebbian 

Competitive 

Recurrent 

Multi-layer 
feed-forward 

Perception 
learning algorithms 
Back-propagation 
Adaline & Madaline 

Boltzmann learning 
algorithm 

Linear discriminant 

Learning vector 
quantization 

Competitive 

ART network     ART Map 

Pattern classification 
Function approximation 
Prediction, control 

Pattern classification 

Data analysis 
Pattern classification 

Within-class categorization 
Data compression 

Pattern Classification 
Within-class categorization 

Unsupervised     Error-correction    Multi-layer Sammon's project 
feed-forward 

Data analysis 

Hebbian Feed-Forward    Principal component     Data analysis 
or competitive    analysis Data compression 

Competitive Competitive Vector quantization Categorization 
Data compression 

Kohonen's 
SOM 

Kohonen's SOM Categorization 
Data analysis 

ART network ART1, ART2 Categorization 

Hybrid Error-correction 
and competitive 

RBF network RBF learning 
algorithm 

Pattern classification 
Functional approximation 
Prediction, control 

Table 3.1: A layout of different types of architectures and the task they perform [Ref. 4]. 
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2.        Choosing an Architecture 

Of the classifiers, perceptron, multi-layer feed-forward, Hopfield, SOFM, ART, 

Boltzmann, and Hebbian, the multi-layer feed-forward neural network provides the best 

architecture for the UXO problem. The perceptron is limited in the number of decision 

regions it is able to separate to one. Boltzmann and Hopfield rely on binary input and are 

constantly training. Continuous data will be used for the UXO problem. SOFM, ART, 

and Hebbian networks rely on associative memory which will slow the network down 

when considering the number of nodes that are needed for this problem. 

The multi-layered feed-forward network has a fast execution time because 

training has already been completed and it is not an associative memory network. This 

means the network only has to feed-forward while making a decision and not backward 

as well. A fully connected multi-layered network will produce more overhead than a 

feature extraction network, but still less than an associative memory network. This type 

of network is able to generalize quite well. The multiple number of layers allows the 

network to separate complex decision regions as shown in Figure 3.1. Once the network 

is established, one must create a new network in order to expand the output set or 

combine two networks. Both methods will require retraining. The back-propagation 

algorithm is slow in convergence, but once the network is trained, the algorithm is 

removed. 

B.        MULTI-LAYERED FEED-FORWARD NETWORK 

The multi-layered feed-forward neural network has been chosen as the 

architecture for this thesis. It can be shown that a three layer network consisting of an 

input layer, one hidden layer, and an output layer, can represent any function provided 

there are a sufficient number of neurons in the hidden layer [Ref. 10]. For this reason, 

without any other information on how to start a neural network, the three layer network is 

kind of the standard. Therefore, a three layer network has been chosen in order to cut 

down on the total number of neurons and for it's simplicity. 
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The input layer of the network is folly connected to the hidden layer. This means 

that for each neuron in the hidden layer, there is a weight that is associated with a 

corresponding neuron in the input layer. The input layer in this network serves as only an 

input node. The values from each input neuron are passed on to all of the neurons in the 

hidden layer. Figure 3.2 illustrates how the values are passed to the hidden layer. 

The hidden layer is where the first computations take place. Each neuron in the 

hidden layer takes the weighted sum of all of the values from the input layer. Each 

neuron then runs the weighted sum through a non-linear activation function in order to 

get the output value for each neuron in the hidden layer. The activation function to be 

used is the logistics function which will be discussed more in the next section. Now the 

process starts all over again. This time the input is the output from the hidden layer. 

Input Values Hidden Layer Neurons Output Layer Neuron 

Figure 3.2: Multi-layered feed-forward neural network. 

The output layer receives the output values of the hidden layer as its input values. 

The number of nodes in the output layer corresponds to the number of different elements 

in the training set. For example, if your net is set up to classify 5 different items, then 

there are five neurons in the output layer. Referring to Figure 3.2, the same process starts 

all over again. The weighted summation of the input values multiplied by the weights are 

fed through the activation function. The highest value of the output layer neurons is the 

answer for the particular input data fed to the network. Notice that each neuron in the 

output layer has the same number of weights associated with it as the number of neurons 
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in the hidden layer.   How these weights are derived is the topic of the next section. 

Figure 3.3 shows how the input values are fed forward through a feed-forward network. 

The following is an outline of the feed-forward process in a three layer neural 

network: 

• Calculate the weighted sum for the hidden layer. The weighted sum simply 

takes the input values of all of the nodes connected to a neuron and multiplies 

those values by there associated weights.    The resulting values are then 

summed. 

j 

weighted_sumj =^input_valuek * weighty 

Where i is the neuron in the hidden layer and k is the input neuron. 

H, = (.98 * 1) + (.65 * 2) + (.50 * 1) = 2.78 

H2 = (.98 * 2) + (.65 * 2) + (.50 * 3) = 4.76 

H3 = (.98 * 1) + (.65 * 1) + (.50 * 1) = 2.13 

Figure 3.3: Feed-forward network 
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Calculate the output value. The output value for the neuron is the weighted 

sum fed through an activation function. The logistic function will be used in 

this network. 

output_\aluei = logistic _ fiinction(weighted _sumi) 

Where i is the neuron in the hidden layer. 

U, = V(l+e2-7S) = .94 

H2 = 1/ (1 + e"476) = .99 

H3 = 1/ (1 + e213) = .89 

Calculate the weighted sum for the output layer. This is the same as for the 

hidden layer. The input value is know the output value of the hidden layer 

J 

I 
J 

weighted_sumi -^input _yaluek *'weightki 

Where i is the neuron in the output layer and k is the hidden layer neuron. 

O, = (.94 * -1) + (.99 * 1) + (.89 * 2) = -1.83 

02 = (.94 * 1) + (.99 * -1) + (.89 * -2) = 1.83 

•    Calculate the output value. Use the same process as the hidden layer. 

output _valuej = logistic_function{weighted_sumj) 

Where i is the neuron in the hidden layer. 

O, = 1/(1+ e1-83) = .86 

02=l/(l+e183) = .14 

The output values .86 and .14 are the actual outputs for the network. In this case 

the desired output was 1 and 0. The next step is to adjust the weights in order to reach the 

desired output. This process is accomplished through the back-propagation algorithm. 
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C.       BACK-PROPAGATION ALGORITHM 

Training an artificial neural network deals with optimizing the weights associated 

with each individual neuron in order to produce the desired results. In a truly feed- 

forward network, each neuron contributes to the overall error produced by the output 

neurons. The error is produced by having the wrong weight values. It is impossible to 

guess the correct value of each weight in the network. A method must be established to 

choose these weight as to produce the correct output. The back-propagation algorithm is 

one way of solving this problem. 

The development of the back-propagation algorithm has made the multi-layer 

neural network the most popular of the artificial neural networks. The back-propagation 

algorithm seems to have been developed simultaneously by Rumelhart, Hinton, and 

Williams in 1986, Parker in 1986, and LeCun in 1985 [Ref. 7]. The algorithm is rather 

straight forward. If a designer has no idea what the weights for his network should be, 

which is almost always the case, he can start with random weights and let the back- 

propagation algorithm determine what the values should be. An optimal value for all of 

the weights is hard to achieve, but determining the values within an acceptable level of 

error is usually achievable. Based on an acceptable level of error, the back-propagation 

algorithm adjust the weights until the level of error is within a given tolerance. Zero 

tolerance on error is an unrealistic goal, rather a small percentage of acceptable error is 

used. 

The whole key to the algorithm is based on the gradient descent problem 

illustrated in Figure 3.4. Adjusting weights must be done a little at a time in order to get 

the best possible answer. The step toward the optimal solution is called the learning rate. 

If too large of steps are taken, the training algorithm may jump back and forth on the 

bowl and never reach an optimal solution. A very small step down the side of the bowl 

will translate into a significant change in the x value. Figure 3.4 illustrates the change in 

the value of x and how it will effect the ability of the net to reach the global minimum, 

also known as the optimal solution. There are also local minimums that can be reached if 
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the step is too small. This means that the "optimal" values for the weights will not 

produce the optimal solution. The way to get around falling into this trap is to choose a 

small step in exchange for a long training period, or use trial and error by retraining the 

network until you are satisfied with the results. Either way is time consuming. 

Aggregate 
Error 

Weight y 

Initial weight 
Vector 

Ideal 
weight 
vector 

Delta 

New   vector 

weight 
vector 

Figure 3.4: A pictorial representation of the gradient descent problem. 

Another method often employed when training a network is to use a momentum 

variable. The idea behind the momentum variable is to take big steps with the gain 

variable and then the momentum variable is applied in order to further fine-tune the 

network towards the optimal value for the weights. This method creates the effect of 

speeding towards the optimal solution and then putting on the brakes and gradually 
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slowing down. The whole idea is to stop as close to the optimal solution without going 

beyond the optimal solution and heading back up the other side of the bowl in Figure 3.4. 

The multi-layered feed-forward neural network shown in Figure 3.3 will be used 

to demonstrate how the back-propagation algorithm was employed in this thesis. The 

back-propagation algorithm is outlined as follows using a three layer feed-forward 

network: 

• Calculate the output error for each neuron in the output layer. After the inputs 

have been fed through the network and the output layer produces an answer 

for each neuron in the output layer, the answer is compared to the expected 

output answer. 

Output Error = Expected - Actual 

Output Error Ox = 1 - .86 = .14 

Output Error 02 = 0 - .14 = -.14 

• Calculate the total error for each element in the training set. The total output 

error is calculated by summing the absolute values of each node in the output 

layer. This is the total error for that element in the training set. 

TotalOutputError = ^OutErr, 
y=i 

Where i is the number of neurons in the output layer. 

Total Output Error = |.14| +1-.14| 

• Calculate the total error for the training set. This variable will be updated as 

every element in the training set is feed through the network. 

Total Error = Total Error + Total Output Error 

• Calculate the incoming error for the middle layer. The amount of error the 

middle layer contributes to the output error is a two step process. First one 

must notice that each node in the middle layer contributes an error to all of the 

nodes in the output layer. With this in mind, the error at each output node 

must be multiplied by the weight associated with the node in the middle layer. 
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These values are then summed to produce the incoming error for that 

particular node in the middle layer. 

IncomErr = £ {OutputErrorj * weightk) 

Where j and k are which output node. 

Incoming Error H, = ((.14 * -1) + (-.14 * 1)) = -.28 

Incoming Error H2 = ((.14 * 1) + (-.14 * -1)) = .28 

Incoming Error H3 = ((.14 * 2) + (-.14 * -2)) = -.56 

This is the method used for dealing with propagating the output layer error 

back in this thesis. Another method used is to figure the derivative of the 

output layer error in order to propagate the actual error back. The above 

method used in this thesis allows for a faster training period. 

Calculate final error for each middle layer node. Calculating the final error 

takes into account that an activation function was used to produce the error 

value being propagated back. Therefore the values from the calculate 

incoming error step must be fed back through the activation function. This is 

achieved by calculating the derivative of the activation function. This is why 

a non-linear function is used as the activation function. An activation function 

with a smooth non-linear transition works the best. The logistic function is 

used due to the ease of calculating the derivative. 

Final _Error = Incommmg_Error* Derivative _of_activation_ function 

For the logistics function, the derivative is the value at the middle layer node 

multiplied by one minus the value at the middle layer node. See Figure 3.5. 

Final Error H, = -.28 * .94(1 - .94) = -.0158 

Final Error H2 = .28 * .99(1 - .99) = .0028 

Final Error H3 = .56 * .89(1 - .89) = .0548 

Calculate weight change for each output layer weight.   At this stage in the 

algorithm the learning rate must be taken into account.  Since the amount of 
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error is now known, how far to move towards the optimal solution without 

stepping over that solution must be determined. That is the function of the 

learning rate. A large learning rate may miss the optimal solution, however a 

small learning rate will take longer to train. 

AWeightj = ß * OutputErrorj * InputValuesk 

Where j is the weight to be adjusted, i is the error at the output node, k is the 

value from the middle layer node and ß is the learning rate. 

AO,W1 = .2*.14*.94 = .0263 

AO!W2 = .2*.14*.99 = .0277 

AO,W3 = .2*.14*.89 = .0249 

output 

-.0158 fm 

input 

Figure 3.5: Back-propagation 
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• Change weights for each output layer weight. Here all that is need is to add 

the weight change calculated in the above step to the current weight value. 

W, = -1 + .0263 = -.9737 

W2=l+.0277 = 1.0277 

W3 = 2 + .0249 = 2.0249 

• Calculate weight change for middle layer weights. This step follows the same 

equations as the output layer. 

AWeightj = ß* OutputErrort * InputValuesk 

AHM = .2 * -.0158 * .98 = -.0031 

AH,W2 = .2 * -.0158 * .65 = -.0021 

AH,W3 = .2 * -.0158 * .50 = -.0016 

• Change weights for each middle layer weight. 

W, = l+-.0031=-.9969 

W2 = 2+ -.0021 = 1.0079 

W3 = 2+ -.0016 = .9984 

• Repeat process for each element in the training set. Every element in the 

training set must be fed through and the weights adjusted once for each 

element. Then in the next step, the sum of the errors for each element in the 

training set is compared against the acceptable level of error. If the error is 

not in tolerance, the whole process is repeated. This prevents the training of 

each element in the training set to the acceptable level of error one at a time. 

The results ofthat method would be adjusting the weights for the first element 

then the next and finally the last one. However this would lead to the net 

being training only for the last element in the training set and not the other 

elements. Figure 3.6 shows the results of the above calculations for one side 

of the network. 
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Figure 3.6: Adjusted weights 

•    Repeat the entire process until Total Error is at an acceptable level.   This 

thesis uses the method of totaling up the errors and comparing them to an 

acceptable level of error.   Other methods include the least mean square and 

standard deviation.    Whatever the method, the goal is to determine the 

stopping point of the training process. 

That was just one iteration of the back-propagation algorithm.   Usually many 

iterations are needed in order to reach the acceptable level of error imposed by the 

designer. Choosing a large learning rate can also lead to jumping back an forth across the 

bowl as described in Figure 3.4. If the network did not get stuck in a local minimum, it 

now contains an acceptable solution for the given training data that is within the chosen 

acceptable level of error. Training a network is usually very computationally expensive. 

The actual ammunition neural network is described in the next chapter. 
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IV. AMMUNITION NETWORK 

A. INTRODUCTION 

The intent of this chapter is to explain in detail the entire process of setting up the 

ammunition network. There are a significant number of tasks that need to take place 

before an artificial neural network can be implemented. First, the training set must be 

chosen. The training set is the set of objects that the neural network is to identify. Data 

preparation is probably the most important phase. The accuracy of the network is based 

upon the training data that is presented to it. So much relies on the data that it is 

important to recognize if this part fails the whole experiment fails. And last, but not least, 

the network must be implemented. 

B. AMMUNITION TYPES 

The ammunition used for this thesis was chosen based upon commonly found 

types in impact areas and availability. A U.S. Army ordnance officer, CPT Paul 

Arcangeli, was consulted for the training set and the items were chosen based on their 

availability at a local ordnance unit. The training set was limited to five common rounds 

due to the amount of time necessary to record the data, and that this should demonstrate a 

proof of concept. The following is a list of the types of ammunition used. 

• 60mm mortar round (Figure 4.1) 

• 81 mm mortar round (Figure 4.2) 

• 105mm artillery round (Figure 4.3) 

• 105mm high explosive anti-tank round (Figure 4.4) 

• 3.5 inch rocket (Figure 4.5) 

The training set is made up of two distinct sets of the above ammunition and is 

displayed in Figures 4.6 and 4.7. The test set was derived from separate readings of the 

second set of ammunition. 
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Figure 4.1: 60mm mortar. 

Figure 4.2: 81mm mortar. 

Figure 4.3: 105mm artillery round. 
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Figure 4.4: 105mm HEAT round. 

Figure 4.5: 3-5in rocket. 

Figure 4.6: Training set 1. 
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Figure 4.7: Training set 2. 

C.       DATA PREPARATION 

1.        Magnetometer 

As was stated in Chapter I, the magnetometer is the sensor that was used in this 

thesis. The GA-72Cd Magnetic Locator has an analog audio signal and a digital display 

of the signal. The display shows the strength of the signal and the polarity of the signal. 

The magnetometer measures the difference in signal strength between two sensors located 

in the shaft of the magnetometer. One sensor is placed towards the bottom of the shaft 

and the other is towards the top of the shaft. The digital readout of the signal is a three 

digit number ranging from -36.0 to 36.0. The orientation of a piece of metal might be 

determined by the polarity of the signal. The polarity is indicated by the positive or 

negative reading. A 175mm projectile can be detected up to five feet in the ground. 

There are four sensitivity levels on the magnetometer [Ref. 2]. Sensitivity level 2 was 

used for the data collection. The sensitivity level ranges from 1 to 4, with level 4 being 

the most sensitive. 

Placement of the magnetometer in reference to the round played an important roll. 

The strength of the signal varies with the distance from the bottom of the magnetometer 

to the round. For this reason, the distance from the magnetometer to the round was varied 

in the two training sets.  As will be discussed in the conclusions, this fact will lead to a 
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very large training set when depths and orientations are taken into account. In order to 

limit the size of future training sets some assumptions must be made. The orientation of 

the round will need to be determined based on the centroid of the round and the polarity 

at each end. If this can be determined then the data can be oriented based off a known 

orientation. It is hoped that there is an automatic technique that will bring the data of a 

buried round to the reference point of surface laid. After these two problems are solved 

the next step is to account for possible angles of the round. 

2.        Data Collection 

The readings were taken at the Naval Postgraduate School Beach in Monterey, 

California. Therefore, the terrain was sand. The zero reading for the magnetometer was a 

+.08. A 31cm x 35cm grid was used to record the data. Each grid square was 2cm x 

2cm. This grid square setup produced 1085 readings per piece of ammunition. The data 

was recorded on site and entered into an input file for later use with the neural network. 

An important part of the data collection was a wooden frame on which the 

magnetometer was mounted (Figure 4.8). The frame allow for the magnetometer to be 

moved with two degrees of freedom along the x and y axis of the grid square. The 

placement of the round in the frame was very important for the neural network to be able 

to recognize a round it had seen before. The following list will specify the positions of 

each round. 

• 60mm mortar - Top - 35.5cm from left edge of grid,12.5cm from top edge of 

grid. Bottom-35.5cm from left and 20 cm from bottom. Highest point on 

round - 4 cm from bottom of magnetometer. 

• 81mm mortar - Top - 35.5cm from left, 7cm from top. Bottom - 35.5cm from 

left, 5cm from bottom. Highest point - 2.5cm. 

• 105mm heat round - Top - 36.5 cm from left, 5cm from top. Bottom - 36.5cm 

from left, 4cm from bottom. Highest point - 2.5cm. 
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• 105mm artillery round - Top 37cm from left, 14.5cm from top. Bottom - 

36cm from left, 12.1cm from bottom. Highest point - 2.5cm. 

• 3-5in rocket - Top - 36.5cm from left, 5cm from top. Bottom - 36.5cm from 

left, 12cm from bottom. Highest point - 2.5cm. 

The above measurements apply to the second training set and the test set. The 

positions of the first training set were centered in the frame. This will allow for a 

variation in the overall training set and allow the network a different look at the same 

type of round. The readings are different for the two training sets due to the precision of 

the placement. As will be discussed in the conclusions, this gives an indication of the 

number of possibilities of training sets. 

Figure 4.8: Wooden frame and magnetometer. 

D.        LISP IMPLEMENTATION OF NETWORK 

Lisp was chosen as the prototyping language for the neural network due to the 

ease of list manipulation of each input and weight pairs. If the input and the weights are 

viewed as a list, Lisp will allow for easy manipulation. An object oriented approach was 

taken to the implementation of the multi-layered feed-forward neural network. Having 

no idea of the number of layers or number of neurons in each layer that is needed to get 
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the best solution, the object oriented approach allows for new instantiations of neurons 

and layers if the design were to change. Unfortunately, with a relatively large input size, 

this could lead to a substantial overhead. The neural network is made up of neuron 

objects, layer objects and a network object. 

Objects in Lisp are instantiations of classes. Classes contain slot values which 

store the values that belong to the object. Slot values are the equivalent to data members 

in C++ . Methods are the functions that are allowed to interact with the slot values. They 

are equivalent to member functions in C++. The following classes will be explained in 

terms of slot values and methods. The back-propagation, lisp file is in Appendix D and 

contains the algorithm for training the network. Appendix E contains the user interface 

functions for creating the objects, building the input data and saving the weights 

associated with the network. For further explanation of the code, see the appendices. 

The comments should serve as a guide as to what is happening. 

1. Neuron Class 

The neuron object contains the slot values output-value and a weight-value. The 

code is in Appendix A. Methods include the initialization-neuron and neuron-activation. 

The slot values weight-value and output-value are accessed by there respective accessor 

names weight-vector and output-vector. 

(defclass neuron () 
((weight-value :accessor weight-vector 

:initarg :weight-value 
:initform '()) 

(output-value :accessor output-vector 
:initarg :output-value 
:initform ' (1)))) 

The initialize-neuron method takes as parameters, a neuron object, an input- 

length, and a weight-vector. If a weight list is not passed to the initialization method, 

random weights are created via make-random-weights function. In order to determine 

how many random weights to create, make-random-weights is passed input-length.   A 
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random variable seed is also passed to make-random-weights.  If a weight list is sent to 

initialize-neuron then weight-vector is set to that list. 

(defmethod initialize-neuron ((my-neuron neuron) 
input-length weight-vector1) 

(if (null weight-vectorl) 
(setf(weight-vector my-neuron) 

(make_random_weights input-length 2.0)) 
(setf(weight-vector my-neuron) weight-vectorl))) 

The neuron-activation method calls my-summation which returns the summation 

of the input data multiplied by the weight vector for that neuron. This value is fed to the 

activation function by the call to the sigmoid function. The value returned from the 

sigmoid function is stored in the output-value slot of the neuron. 

(defmethod neuron-activation ((my-neuron neuron) layer-input) 
(setf (output-vector my-neuron) 

(list (sigmoid (my-summation (weight-vector my-neuron) 
layer-input))))) 

2.   Layer Class 

The layer object is a subclass of the neuron class. The code is in Appendix B. It 

inherits all of the properties of the neuron class plus a list of the neurons that are in that 

layer, called node-value, an input-value slot containing the data input values, and a 

number slot corresponding to the number of neurons in the list. Node-list, input-vector, 

and number-value are the accessor names for node-values, input-value, and number 

respectively. 

(defclass layer (neuron) 
((node-value :accessor node-list 

rinitarg :node-value 
:initform'((make-instance 'neuron)) 

(input-value :accessor input-vector 
:initarg :input-value 
:initform '()) 

(number :accessor number-value 
:initarg :number 
:initform 1))) 
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Layer class has four methods: initialize-layer, initialize-node-list, activate-layer 

and activate-layer-list. Initialize-layer sets all of the slot values of layer class. Initialize- 

layers parameters are a layer object and the layer parameters. The layer parameters 

contain the number of neurons in the layer, the input list, and the weight list. The node- 

list is set by calling build-layer which creates the neurons in the node-list. Initialize-layer 

then sets the values of the neurons by calling initialize-node-list. 

(defmethod initialize-layer   ((my-layer  layer)   layer-params) 
(setf(number-value my-layer)    (first  layer-params)) 
(setf(input-vector my-layer)    (second layer-params)) 
(setf(weight-vector my-layer)    (third layer-params)) 
(setf(node-list my-layer)    (build-layer   (first  layer-params))) 
(initialize-node-list my-layer  layer-params)) 

Initialize-node-list iteratively steps through the node-list and taking one neuron at 

a time and calls initialize-neuron which sets all of the slot values of the neuron. Notice 

that the weight list for the neuron must also be sent to initialize-neuron. If the weight list 

is null, the call to initialize-neuron contains the null weight list, else the weight list is 

stepped through in the same manner as the node-list. 

(defmethod initialize-node-list   ((my-layer  layer)   layer-params) 
(do*   ( (i   0   (+  i   1) ) 

(neuronl   (first   (node-list my-layer)) 
(nth  i   (node-list my-layer))) 

(weightl   (first   (third  layer-params)) 
(if   (null   (third  layer-params)) 

(first   (third layer-params)) 
(nth i   (third layer-params))))) 

((>  i   (-   (length   (node-list my-layer))   1))) 
(initialize-neuron neuronl 

(length   (input-vector my-layer))   weightl))) 

The method activate-layer sets the output-vector slot of the layer to the list of 

output values returned by the call to the method activate-layer-list. Activate-layer-list 

iteratively steps through every neuron in the node-list and calls activate-neuron. The 

results of activate-neuron are consed together to build the output-vector. 
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(defmethod activate-layer-list ((my-layer layer)) 
(do* ( (i 0 (+ i 1) ) 

(layerl (cons (first (neuron-activation 
(first (node-list my-layer)) (input-vector my-layer))) ()) 

(cons  (first (neuron-activation (nth i (node-list my-layer)) 
(input-vector my-layer))) layerl)) 

) 
((> i (-(length (node-list my-layer)) 2)) (reverse layerl)) 

)) 

3. Network Class 

The network class is a subclass of the layer class. The code is in Appendix C. It 

inherits all of the slot values of the layer class. Since the layer class is a subclass of the 

neuron class, the network class also inherits all of the slot values of the neuron class. The 

only additional slot value is the nodes-layer-value which can be accessed by the nodes- 

per-layer accessor. 

(defclass network (layer) 
((nodes-layer-value :accessor nodes-per-layer 

:initarg :nodes-layer-value 
:initform ' (1)) ) ) 

The network class contains the four methods: initialize-network, initialize- 

network-layers, activate, and activate-network. They all serve the same purposes as the 

methods in the layer class just at a higher level of abstraction. Initialize-network sets all 

of the slot values to the values of the network parameters that are passed in. The network 

parameters consist of a list that contains two list. The first list is the number of neurons, 

the input data, and the weight list for the first layer. The second list is the number of 

neurons, input data and weight list for the second layer. The input data for the second 

layer is initialized to the input data for the first layer, but it is changed to the output- 

vector of the first layer when the network is activated. It also calls build-network which 

makes instances of layers. 
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(defmethod initialize-network ((my-network network) network-params) 
(setf(input-vector my-network) (second (first network-params))) 
(setf(number-value my-network) (length network-params)) 
(setf(nodes-per-layer my-network) (list(first (first network-params)) 

(first(second network-params)))) 
(setf(node-list my-network) (build-network 

(length network-params))) 
(initialize-network-layers my-network network-params) ) 

Initialize-network-layers strips off each layer from the node-list of the network 

and passes it to initialize-layer which sets up the layer and calls initialize-neuron to 

initialize each neuron in the layer. 

(defmethod initialize-network-layers((my-network network)network-params) 
(do* ( (i 0 (+ i 1) ) 

(layerl (first (node-list my-network)) (nth i (node-list 
my-network))) 

) 
((> i (- (length (node-list my-network)) 1))) 
(initialize-layer layerl (nth i network-params))) 

) 

Activate sets the output-vector of the network to the value returned from activate- 

network. Activate-network strips off one layer at a time and passes it to activate-layer 

which sends each neuron in the layer to activate-neuron. It also sets the input value of 

the second layer to the output value of the first layer. 

(defmethod activate ((my-network network) my-network-input) 
(set-network-input my-network my-network-input) 
(activate-network my-network) 
(setf(output-vector my-network) 

(output-vector (first (last (node-list my-network)))))  ) 

(defmethod activate-network ((my-network network)) 
(do* ( (i 0 (+ i 1) ) 

(output-layer(activate-layer (first (node-list my-network))) 
(if (nth i (node-list my-network)) 

(activate-layer (nth i (node-list my-network))))) 

) 
((> i (- (length (node-list my-network)) 1))) 
(if (nth (+ i 1) (node-list my-network)) 

(setf(input-vector (nth (+ i 1) (node-list my-network))) 
output-layer)))) 
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4. Back-propagation Algorithm 

The back-propagation algorithm was implemented in the backprop.lisp file in 

Appendix D. The function train takes a network object, input-vector, and acceptable- 

error as parameters. Train calls train-set with the network object and the input-vector 

until the error is within the acceptble-error level. 

(defun train   (my-network input-vector acceptable-error) 
(do*   ((error   (train-set my-network input-vector) 

(train-set my-network input-vector)) 
((<  error  acceptable-error)    'done) 

The input-vector consist of each of the training sets input data followed by the 

expected output for that particular run through the network. The input vector in this 

network consist of a list containing 5 list. Each of the five list are made up of two list 

containing the variable refering to the input data for that round and the expected output 

for that round. For instance, one such input vector would look like this: 

((81mm(l 0 0 0 0))(60mm(0 1 0 0 0))(arty(0 0 1 0 0))(heat(0 0 0 1 0))(3-5in(0 0 0 0 1))) 

Train-set trains the network on the input-vector by calling train-network 

iteratively with each of the five list in the input-vector. Compute-error computes the 

error for each round. The errors for each round, current-error, are added to total-error 

and compared to the acceptable-error in train to determine when to stop training the 

network. 

(defun  train-set   (my-network input-vector) 
(do*   ( (i   0   (+  i   1) ) 

(current-error   (compute-error 
(train-network my-network(first(first  input-vector)) 

(second   (first  input-vector)))) 
(if   (nth  i   input-vector) 

(compute-error   (train-network my-network 
(first   (nth  i   input-vector)) 
(second   (nth  i   input-vector)))))) 

(total-error current-error 
(if   (nth  i  input-vector) 

(+  total-error  current-error)))) 
((>  i   (-   (length input-vector)   2))total-error))) 
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Train-network activates the network with one of the rounds and computes the 

output-error-vector by calling calc-output-error with the expected-output and the output- 

vector of the network. The hidden-layer error-vector is calculated by calling hidden- 

layer-errors with the output-error-vector and the node-list in reverse order. The node-list 

of the network is the layers. By reversing the node-list, the layers are iterated through 

from output layer to input layer in the function hidden-layer-errors. The function 

hidden-layer-errors will be discussed later. Now that the output-error-vector and the 

hidden-layer-error-vector are known, the weights at each neuron can be changed. This is 

accomplished by calling calculate-weight-change with the node-list in reverse and a list 

containing the output-error-vector and the hidden-layer-error-vector. Calculate-weight- 

change is also an involved function and will be discussed later. At this point the weight- 

vector at the layer level has been changed and now the weight-vector for each neuron 

needs to be changed. Set-neuron-weights accomplishes this task. 

(defmethod train-network ((my-network network)input-list 
expected-output) 

(activate my-network input-list) 
(let* ((output-error-vector (calc-output-error expected-output 

(output-vector my-network))) 
(hidden-layer-error-vector 

(hidden-layer-errors output-error-vector 
(reverse (node-list my-network)))) 

) 
(calculate-weight-change (reverse (node-list my-network)) 

(cons output-error-vector 
hidden-layer-error-vector)) 

(set-neuron-weights (node-list my-network)) 
(output-vector (first (last (node-list my-network)))) 
output-error-vector 

)) 
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The function hidden-layer-errors calculates the incoming error of the hidden layer 

by calling calc-inc-errors with the error-vector and a transposed weight-vector. In effect 

what calc-inc-errors does is multiply the output-error caused by the neuron with the 

weight-vector and adds up the values in the resulting list. This value, called the 

incoming-error in the function calc-final-error, is fed back through the sigmoid function 

by calculating the derivative of the sigmoid function. 

(defun hidden-layer-errors (error-vector layer-list) 
(do* ( (i 0 (+ i 1) ) 

(new-error-vector 
(cons (calc-final-error 

(calc-inc-errors error-vector 
(conv-weight-list(weight-vector(first layer-list)))) 

(first layer-list)) 
0) 

(cons (calc-final-error 
(calc-inc-errors error-vector 

(conv-weight-list (weight-vector(nth i layer-list)))) 
(nth i layer-list)) 

new-error-vector)) ) 
((> i (- (length layer-list) 2)) (reverse new-error-vector)))) 

(defmethod calc-final-error (incoming-error-vector layer) 
(let ((vectorl (input-vector layer))) 

(mapcar #'calculate-final-error vectorl incoming-error-vector)) 

) 

(defun calculate-final-error (node-value incoming-error) 
(* incoming-error node-value (- 1 node-value))) 

(defun calc-inc-errors (output-error-vector output-weights) 
(do* ( (i 0 (+ i 1) ) 

(inc-error (cons (my-summation output-error-vector 
(first output-weights)) 

0) 
(cons (my-summation output-error-vector 

(nth i output-weights)) 
inc-error)) 

) 
((> i (- (length output-weights) 2)) (reverse inc-error)) ) 
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Calculate-weight-change iterates through each layer in the network calling calc- 

wt-chg with the layer-list, error-vector, and weight-vector for that layer. Calc-wt-chg 

calculates the amount of change by calling calculate-delta-weight with the learning rate 

(*step*) and the above parameters. Calculate-delta-weight multiplies the *step* with 

error and the arc-weight (original value at the neuron). Calc-wt-chg then calls change- 

weight which actually changes the weights for that layer. It is not easy to see what is 

actually going on here, but it follows the back-propagation algorithm laid out in Chapter 

III. 

(defun calculate-weight-change (layer-list error-vector-list) 
(if (first layer-list) 

(setf(weight-vector (first layer-list)) 
(calc-wt-chg (first layer-list) (first error-vector-list) 

(weight-vector (first layer-list))) )) 
(if (first layer-list) 

(calculate-weight-change (cdr layer-list) (cdr error-vector-list)))) 

(defun calc-wt-chg (my-layer error-vector weight-vector-list) 
(do* ((i 0(+ i 1)) 

(weightl (cons 
(change-weight 

(calculate-delta-weight *step* 
(first error-vector) (input-vector my-layer)) 

(first weight-vector-list)) ()) 
(cons (change-weight 

(calculate-delta-weight *step* 
(nth i error-vector) (input-vector my-layer)) 

(nth i weight-vector-list)) weightl))) 
((> i (- (length error-vector) 2)) (reverse weightl))))  

(defun calculate-delta-weight (beta-shift error arc-weight) 
(do* ( (i 0 (+ i 1) ) 

(delta-weight (cons (* beta-shift error (first arc-weight)) ()) 
(cons (* beta-shift error (nth i arc-weight)) delta-weight)) 

) 
((> i (- (length arc-weight) 2)) (reverse delta-weight)) 

)) 

(defun change-weight (vectorl vector2) 
(mapcar #'+ vectorl vector2)) 
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5.        User Interface 

The user interface is in the ammo-rec.lisp file found in Appendix E. This file 

contains three driver functions that the user can call in order to run the ammunition neural 

network. The first is the ammo-recognition function which creates a new network by 

making a network object called ammo-network. It sets up the network parameters that are 

passed to initialize-network along with the network object. Next, the functions calls train 

which invokes the back-propagation algorithm. Train continues to run until the 

acceptable level of error, which is passed to train is reached. Once the network has 

reached the acceptable level of error, the weights are written to a file called ammo- 

wgts.dat. This is how the network object is saved. After all, the only portion of the 

network that cannot be easily reproduced are the weights. 

(defun ammo-recognition () 
(defparameter *step* .2) 
(setf output-type-list '("81mm" "60mm" "105mm" "105heat" "3.5in")) 

(format t "In build-my-input ~%") 
(build-my-input) 
(setf ammo-parameters (list(list (length 81mm) 81mm ()) 

(list (length output-type-list) 81mm ()))) 
(format t "In make-instance ~%") 

(setf ammo-network (make-instance 'network)) 
(format t "In initialize ~%") 

(initialize-network ammo-network ammo-parameters) 
(format t "In train ~%") 

(train ammo-network (build-ammo-input) '.2) 
(output-file "data/ammo-wgts.dat") 
(save-weights ammo-network)) 

The second function that invokes the network is the load-ammo-net function. 

This function is used when the user wants to load a network that has already been trained. 

The function retrain allows the user to continue training the network with current 

(defun load-ammo-net (wgts) 
(setf output-type-list '("81mm" "60mm" "105mm" "3.5in" "105heat")) 
(build-my-input) . 
(setf parameters (list (list (length t3-5in) t3-5in (first wgts)) 

(list (length output-type-list) t3-5in (second wgts)))) 
(setf ammo-network (make-instance 'network)) 
(initialize-network ammo-network parameters)) 
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weights and a different step value, as well as a different level of acceptable-error.  The 

step value is the learning rate of the network. 

(defun retrain-ammo-net (wgts) 
(defparameter *step* .1) 
(setf output-type-list '("81mm" "60mm" "105mm" "3.5in" "105heat")) 
(build-my-input) 
(setf parameters (list (list (length t3-5in) t3-5in (first wgts)) 

The user can modify the ammo-net function that activates the network. The 

ammo-net function sends the test input to activate and outputs the type of round the net 

decides the input resembles. 

(defun ammo-net() 
(format t "input: 60mm output:  ~A~% " 

(determine-output(activate ammo-network tst60mm))) 
(format t "input: 81mm output: ~A~% " 

(determine-output(activate ammo-network tst81mm))) 
(format t "input: 105mm arty output: ~A~% " 

(determine-output(activate ammo-network tstl05mm))) 
(format t "input: 3.5in rocket output: ~A~% " 

(determine-output(activate ammo-network tst3-5in))) 
(format t "input: 105mm heat output: ~A~% " 

(determine-output(activate ammo-network tstheat)))) 

This program was also written in C++ to improve performance by reducing 

training time. The next chapter summarizes the findings and lessons learned in this 

thesis. 
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V. RESULTS 

A.       AMMUNITION GRAPHS 

The actual data values collected on each round can be found in appendix E. The 

31 x 35 matrix of data values is a bit overwhelming, so all of the data collected on the 

rounds was graphed using MATLAB. The graphs show both the similarities and 

differences in the rounds. Figures 5.1 - 5.5 contain the graphs of the ammunition. As 

you can see, the 105mm heat round and the 81mm mortar graphs are virtually identical. 

This fact will explain the results of the testing phase. 

Figure 5.1: 60mm mortar input data graph. 
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Figure 5.2: 81mm mortar input data graph. 

Figure 5.3: 105mm artillery input data graph. 
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Figure 5.4: 105mm HEAT input data graph. 

Figure 5.5: 3-5in rocket input data graph. 
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B.       TRAINING 

The amount of time a network takes to train is directly related to the values of the 

starting weights, learning rate and acceptable error. If the starting weights are close to the 

ideal weights then the time to train the network is less. If the learning rate is too small 

the network will take a long time to reach the optimal weights. If the learning rate is too 

large then the error will jump back and forth across the bowl (Figure 3.3). The acceptable 

level of error is the stopping point, so it will directly effect the time a network takes to 

train. All of these factors, along with using Lisp, make it hard to judge the performance 

of the back propagation algorithm. 

The current network took 64 hours to train on an IRIX System V.4. Random 

weights, a learning rate of .2 and an error rate of .2 were used. Only 13 iterations of feed 

forward and back propagation were executed. The training phase produce 13.1 MB of 

data containing the weights for the neural network. 

From these figures it is obvious that Lisp took a lot of the time to declare 

variables, dynamically allocate memory, compute the calculations and make the changes 

in the weights. This neural network would not work on a Sun OS due to the 

unavailability of enough heap space. The above IRIX OS release 5 with four 40 MHZ 

processors and 98 MB of memory was used to train the network. The network was 

originally written in a recursive format due to the nature of Lisp, but it had to be rewritten 

iteratively in order to have enough heap space to run. The nature of the neuron objects 

also carried a lot of overhead with them. Each neuron object has a weight vector of 1085 

values and there are 1095 neuron objects. These figures translate into 1.18 x 106 values 

that have to be represented as variables. A network with a relatively large input set 

would run faster if it were written as functions, multiplying matricies, the least amount of 

overhead, the better. 

Figures 5.6 and 5.7 show a graph of the error values after each iteration when the 

ammunition network was trained. The graph displays the error values on the left and the 
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iterations along the bottom.  Notice how the iterations jump back and forth across the 

bowl. Remember a .2 error and .2 learning rate was used to train this network. 
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Figure 5.6: Graph of error convergence for iterations 1-6. 
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Figure 5.7: Graph of error convergence for iterations 7-13. 

TESTING 

Once the neural net was trained, the next step was to test the network on data it 

had not seen before. A third set of data was collected on the second training set of 

ammunition. These readings were different from the original training set which ensured 

the network had not seen the data before. To say a network has seen data before means it 

has been trained on the data. The following results point out the type of ammunition fed 

to the network, the amount of time it to come up with the answer, the amount of memory 

used and how the network classified the ammunition. The order in which the output list 
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classifies the ammunition is 81mm mortar, 60mm mortar, 105mm artillery, 3-5in rocket, 

and 105mm HEAT. For instance, the 0.0 in (0.0 6.91607e-26 1.59656e-8 1.0 6.895369e- 

13) is the 81mm mortar, 6.91607e-26 is the 60 mm mortar, 1.59656e-8 is the 105mm 

artillery round, 0.0 is the 3-5inch rocket, and 6.895369e-13 is the HEAT round. The 1.0 

shows that the network decided the input data was a 3-5in rocket. All of the other 

numbers are essentially zero due to the negative exponents. 

•    3-5in rocket 

[3] user(ll): (time (activate ammo-network tst3-5in)) 

; cpu time (non-gc) 40,790 msec user, 390 msec system 

; cpu time (gc)     10,380 msec user, 40 msec system 

; cpu time (total)  51,170 msec user, 430 msec system 

; real time  51,695 msec 

; space allocation: 

4,742,615 cons cells,;  0 symbols, 37,968,408 other bytes 

(0.0 6.91607e-26 1.59656e-8 1.0 6.895369e-13) 

105mm artillery 

[3] user(12): (time (activate ammo-network tstl05mm)) 

; cpu time (non-gc) 40,980 msec user, 270 msec system 

; cpu time (gc)     9,120 msec user, 40 msec system 

; cpu time (total)  50,100 msec user, 310 msec system 

; real time  50,877 msec 

; space allocation: 

4,742,592 cons cells,;  0 symbols, 37,966,920 other bytes 

(0.0 0.0 1.0 0.026313068 0.8945341) 
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•    60mm mortar 

[3] user(13): (time (activate ammo-network tst60mm)) 

; cpu time (non-gc) 41, 330 msec user , 80 msec system 

; cpu time (gc) 11, 620 msec user , 70 msec system 

; cpu time (total) 52, 950 msec user , 150 msec system 

; real time 53,547 msec 

; space all ocation: 

4,742 ,592 cons cells, 0 symbols, 37,966, 920 other bytes 

(0.0 1 .0 0. 01103451" ' 3 4060365e- -8 4. 867868^ e-9) 

81mm mortar 

[3]   user(14):    (time   (activate  ammo-network tst81mm)) 

;   cpu time   (non-gc)   41,590 msec user,   80 msec  system 

;   cpu time   (gc) 9,200 msec user,   50 msec  system 

;   cpu time   (total)     50,790 msec user,   130 msec  system 

;   real time     51,062 msec 

;   space  allocation: 

4,742,592  cons  cells,;     0  symbols,   37,966,920  other bytes 

(5.8375394e-14 1.521067e-13 4.5806116e-13 4.017225e-10 0.99741983) 

105 HEAT 

[3]user(15):(time (activate ammo-network tstheat)) 

;cpu time(non-gc)41,360 msec user, 60 msec system 

;cpu time (gc)   12,480 msec user, 60 msec system 

;cpu time(total) 53,840 msec user, 120 msec system 

; real time  54,085 msec 

; space allocation: 

4,742,592cons cells,;Osymbols,37,966,920other bytes 

(3.7480947e-29 7.8907937e-15 3.702611e-ll 3.8968346e-15 1.0) 
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The average of the real time taken to compute an answer after training is 52.253 

seconds. The amount of memory used was 42.7 MB. The test phase shows that 4 out of 

5 of the rounds were correctly identified. In the test data, the 81mm mortar was the only 

round that was not correctly identified. It was identified as a 105mm HEAT round with 

.99 out of 1.0 accuracy. However all of the other pieces of ammunition were correctly 

identified with a precision of 1.0. A look at the graph of the 81mm mortar and the 

105mm HEAT rounds will show a remarkable similarity. The results might have been 

better if there were not max readings of -36.0 and 36.0. The HEAT round would have 

had a higher peak than the 81mm mortar. When the training data was feed through the 

network all of the ammunition was correctly classified. The 81mm mortar was classified 

as an 81mm mortar. 

Further testing revealed that when data the network had not seen before and was 

not trained to identify was input, the network gave false positives. Readings were taken 

on a tin can and the network identified the can as an artillery round with a 1.0 accuracy. 

This result was an unfortunate turn of events. Hopefully, the network would have came 

up with low numbers, .70 or less, on all of the outputs for the tin can. An analysis of the 

graph of the tin can and the artillery shell revealed that the two sets of input data were 

similar but not identical. Figure 5.8 shows the graph of the tin can. 

Figure 5.8: Tin can input data graph. 
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VI. CONCLUSIONS 

A.       THESIS QUESTIONS 

The goal of this thesis was to determine if an artificial neural network was capable 

of correctly identifying unexploded ordnance. In making this determination the 

following thesis questions were addressed: 

• Are artificial neural networks able to correctly identify, within a certain degree 

of precision, various type of unexploded ordnance both surface laid and 

buried? 

• What type of neural network architecture is best for the job? 

• What is the training set to be used in the training of the neural network? 

• With what precision are the objects correctly identified? 

Are artificial neural networks able to correctly identify, within a certain degree of 

precision, various type of unexploded ordnance both surface laid and buried? It has been 

shown that a neural network is capable of identifying 4 out of the 5 pieces of ammunition 

with a .99 or higher certainty. These results are based on data inputs from a test set made 

up of a 60mm mortar, 81mm mortar, 105mm artillery round, 105mm HEAT round and a 

3-5in rocket. The amazing part of this result is that only two sets of data on the above 

ammunition were used to train the network. A neural network is trained to recognize a 

pattern. The more variations ofthat pattern used to train the network, the more efficient 

the network is in correctly classifying a pattern that is slightly different from the pattern 

used to train the network. Yet, the multi-layer feed-forward artificial network was able to 

correctly identify 4 pieces of ammunition with only two sets of training data. 

The quality of the sensor and the limited range of output values lead to the failure 

of the network to correctly identify the 81mm mortar. The range of the sensor is -36.0 to 

36.0. Both the 81mm mortar and the 105mm HEAT round reached the maximum value 

of the sensor in the same area of the grid. If the sensor's maximum value was higher, the 
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two rounds would have different values in the center of the grid. Therefore, the network 

would be able to distinguish between the two rounds. 

When the two sets of training data were input in to the network, 100% of the 

ammunition was correctly identified. This fact also leads me to believe that with more 

training data the network would be able to distinguish between the 81mm mortar and the 

105mm HEAT round of the test set. 

Where as the test set results are encouraging, the failure of the network to not 

identify the tin can is an area of concern. However, when the network was retrained with 

the tin can included in the training set to produce all zeros, the network trained. This 

shows that if false positives come up on certain types of objects, the network can be 

trained to not recognize the objects. This may allow a neural network to be constructed 

that could be a useful tool in clearing ranges. 

Only surface laid ammunition was tested in this thesis. The problem with a 

network correctly identifying buried ammunition is one of limiting the number of 

possibilities. There are an infinite number of possible ways the piece of ammunition 

could be buried in the ground. The number of possibilities span from the depth of the 

round to the angle of the round. Each of these possibilities will yield a different set of 

input data. Therefore, the problem becomes one of reducing the above infinite set to a 

finite set by limiting the number of angles and depths at which readings are taken. 

Another more viable options is to develop a mathematical equation that would normalize 

the data by bringing the input readings of a buried round to a base case of the above 

surface laid readings. This equation would be based on finding the centroid of the 

magnetometer readings of the round and then orienting the round based upon the strength 

of the readings. 

What type of neural network architecture is best for the job? A multi-layered 

feed-forward neural network with the back propagation training algorithm was used for 

the ammunition recognition network. This network was chosen due to its capabilities as a 

pattern classification network.   Execution speed and the number of layers were also a 
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major determining factors in choosing an architecture. Once a feed-forward network is 

trained, the actual execution time is very fast. With 1085 neurons in the input layer, 

keeping the number of layers to a minimum also contributes to the execution time. 

What is the training set to be used in the training of the neural network? As 

mentioned above, a training set consisting of over 1000 data points was collected for 2 

sets of a 60mm mortar, 81mm mortar, 105mm artillery round, 105mm HEAT round, and 

a 3-5in rocket. These rounds were chosen because they are common types of UXO's and 

because of their availability at a local ordnance unit. 

The last thesis question of what precision the objects are correctly identified has 

already been addressed. Four of the five rounds were correctly identified with a precision 

of .99 or better with only two training sets of data. 

B.        LESSONS LEARNED 

Gathering the data was the most time consuming process of this research. This 

step must be automated. Any network improves in performance with the amount of 

training data. This network was trained on only two sets of the ammunition set. Ten to 

100 or even 1000 sets of data would have been much more effective. Using a large 

training set is a normal practice. The greater the number of training sets of different data 

on the same object, the better any neural network will perform. Automating this data 

collection process using the Naval Postgraduate School autonomous vehicle, Shepard, 

would have made gathering more data possible. 

The position of the round when gathering data is critical to the success of the 

network. Moving the round up, down, left or right, will cause the network to not 

recognize the pattern. This problem leads back to the gathering of more data. The more 

data gathered on the training set in different positions, the better chance the network has 

to identify the test set of ammunition. This is critical when it comes to sending Shepard 

out in the field to identify UXO's. More than likely, the round will not be in the same 

position as it was when the network was trained. 
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Using LISP as the language for the prototype was very helpful. But in order for 

the network to achieve the level of speed required of a real time system, the program 

must be rewritten in C++ or implemented in hardware. Hardware is the better solution. I 

rewrote the network in C++ in order to achieve a faster training time (see Appendix G). 

Training time in LISP was taking hours to iterate through one piece of ammunition in the 

training set. The C++ version was written with as little overhead as possible and was able 

to iterate through the entire training set in a matter of minutes, which was an order in 

magnitude improvement. 

C.       RECOMMENDATIONS FOR FUTURE RESEARCH 

The most important recommendation for future research is to mount the array of 

sensors on Shepard. This will allow for the automated gathering of a large amount of 

training data. I recommend the use of a one dimensional array of 31 sensors on a 

platform out in front of Shepard. The further in front of Shepard this array can be placed 

the better, because Shepard is made of metal and this may affect the sensors. 

Future research must include the ability to determine the identity of a buried 

object. Automating the data collection will aid in the development of a method of 

determining what type of rounds are buried in the ground. Whether the decision is made 

to gather an exhaustive amount of data to train the network on or develop an equation to 

determine the identity of a buried object, automating the data collection is essential. 

The concept of using an artificial neural network to identify UXO's is a valid 

concept and should be pursued further. Although I was unable to prove that a neural 

network will identify a UXO from a NON-UXO, the fact that the network can identify 

one UXO from another is a very significant finding. I believe there exists a set of weights 

that will make the neural network distinguish a UXO from a NON-UXO. The only way 

this will be proven is the collection of more data through automating the process. 
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APPENDIX A: SOURCE CODE (NEURON CLASS) 

;;File: neuron.lsp Franz Common Lisp 

;; Jeff May 

;;21 Mar 97 

;;Contains the neuron class 

;; Copyright © 1997 Jeff May 

;;NEURON CLASS 

;;creates a neuron class with a weight value list, and output value list. 

(defclass neuron () 

((weight-value : accessor weight-vector 

:initarg :weight-value 

:initform '0) 

(output-value : accessor output-vector 

:initarg : output-value 

:initform '(I)))) 

65 



NEURON ACTIVATION 

Feeds the weighted sum of the input vector to the activation 

function inorder to produce an output for the neuron. 

(defmethod neuron-activation ((my-neuron neuron) layer-input) 

(setf (output-vector my-neuron) 

(list (sigmoid (my-summation (weight-vector my-neuron) 

layer-input))) 

)) 

INITIALIZE NEURON 

Takes an input vector and weight vector and sets the data members 

of the neuron. If a nil weight vector is passed in, random weights 

are assigned. 

(defmethod initialize-neuron ((my-neuron neuron) input-length weight-vectorl) 

(if (null weight-vectorl) 

(setf(weight-vector my-neuron) (make_random_weights input-length 2.0)) 

(setf(weight-vector my-neuron) weight-vectorl)) 

) 
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SUMMATION OF A VECTOR 

this does summation on a vector 

> (summation vector) 

> (summation '(2.0 3.0 2.6)) 

(defun my-summation (vectorl vector2) 

(apply'+ (mapcar #'* vectorl vector2))) 

CREATE RANDOM WEIGHTS 

makes a weight list of n elements long 

of random weights +/- of rsw 

> (make_random_weights 3 2.0) 

(0.673233 -1.875556 1.333498) 

(setf rsw 2.0);;or set it globally to a value 

(defun listof (n elt) 

(do* ((i 1 (+ i 1)) 

(weightl (cons elt ()) (cons elt weightl)) 

) 

((> i n) weightl))) 
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Make random weights 

(defun make_random_weights (n rsw) 

(mapcar #'- 

(list_ofnrsw) 

(mapcar #'random (list_of n (* rsw 2))))) 

LOGISTIC ACTIVATION FUNCTION 

this provides a standard activation 

function for a neural net--the logistic 

sigmoid function 

f(x) = 1 / (1 + e (-x)) 

(defun sigmoid (x) 

(/l(+l(exp(-0x))))) 
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APPENDIX B: SOURCE CODE (LAYER CLASS) 

layer class 

Jeff May 

21 March 97 

contains layer class 

Copyright © 1997 Jeff May 

Franz Common Lisp 

Creates a layer class with a node-value, input-value, number and slot values inherited from 
neuron class. Number is the number of neurons in the layer. Node-value is a list containing 
the neurons. 

(defclass layer (neuron) 

((node-value :accessor node-list 

rinitarg :node-value 

:initform '((make-instance 'neuron))) 

(input-value : accessor input-vector 

:initarg :input-value 

:initform'()) 

(number : accessor number-value 

:initarg :number 

:initform 1))) 
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;INITIALIZE LAYER 

initializes the slot values of layer class. 

(defmethod initialize-layer ((my-layer layer) layer-params) 

(setf(number-value my-layer) (first layer-params)) 

(setf(input-vector my-layer) (second layer-params)) 

(setf(weight-vector my-layer) (third layer-params)) 

(setf(node-list my-layer) (build-layer (first layer-params))) 

(initialize-node-list my-layer layer-params) 

) 

INITIALIZE NODE LIST 

Initializes the neurons in the node list. 

(defmethod initialize-node-list ((my-layer layer) layer-params) 

(do*((iO(+il)) 

(neuronl (first (node-list my-layer)) (nth i (node-list my-layer))) 

(weightl (first (third layer-params)) 

(if (null (third layer-params)) 

(first (third layer-params)) 

(nth i (third layer-params)))) 

) 

((> i (- (length (node-list my-layer)) 1))) 

(initialize-neuron neuronl (length (input-vector my-layer)) weightl))) 
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;;BUILD LAYER 

;;Creates the number of neurons need for the layer 

j,——-— 

(defun build-layer (number-neurons) 

(do* ((i 1 (+ i 1)) 

(neuron-list (cons (make-instance 'neuron) ()) 

(cons (make-instance 'neuron) neuron-list))) 

((> i (- number-neurons 1)) (reverse neuron-list)))) 

;;ACTIVATE LAYER 

;;Sets the weight-value slot by activating the layer 

(defmethod activate-layer ((my-layer layer)) 

(setf(weight-vector my-layer) (set-weights (node-list my-layer))) 

(setf(output-vector my-layer) (activate-layer-list my-layer)) 

) 

;ACTIVATE LAYER LIST 

; Activates the neurons in the layer by calling neuron-activation 

(defmethod activate-layer-list ((my-layer layer)) 

(do* ((i 0 (+ i 1)) 

(layerl (cons (first (neuron-activation 

(first (node-list my-layer)) (input-vector my-layer))) ()) 
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(cons (first (neuron-activation (nth i (node-list my-layer)) 

(input-vector my-layer))) layer 1)) 

) 

((> i (-(length (node-list my-layer)) 2)) (reverse layer 1)) 

)) 

;SET WEIGHTS 

;If weights are sent in as parameters then is function is called instead of random weights. 

(defun set-weights (layer-list) 

(if (null layer-list) 

0 
(cons (weight-vector (car layer-list)) 

(set-weights (cdr layer-list))))) 
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APPENDIX C: SOURCE CODE (NETWORK CLASS) 

;;network.lspFranz Common Lisp 

;; Jeff May 

;;21 March 97 

;;Contains network class 

;; Copyright © 1997 Jeff May 

;;Creates a network class which is an instance of a layer class. 

(defclass network (layer) 

((nodes-layer-value accessor nodes-per-layer 

•.initarg :nodes-layer-value 

:initform '(I)))) 

;;INITIALIZE NETWORK 

;;initializes the slot values of network class based on the parameters passed in. 

(defmethod initialize-network ((my-network network) network-params) 

(setf(input-vector my-network) (second (first network-params))) 

(setf(number-value my-network) (length network-params)) 

(setf(nodes-per-layer my-network) (list (first (first network-params)) 

(first (second network-params)))) 

(setf(node-list my-network) (build-network 
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(length network-params))) 

(initialize-network-layers my-network network-params) 

) 

INITIALIZE NETWORK LAYERS 

Initializes each layer in the network by calling initialize-layer 

(defmethod initialize-network-layers ((my-network network) network-params) 

(do*((iO(+il)) 

(layerl (first (node-list my-network)) (nth i (node-list 

my-network))) 

) 

((> i (- (length (node-list my-network)) 1))) 

(initialize-layer layerl (nth i network-params))) 

) 

BUILD NETWORK 

Creates the layers in the network 

(defun build-network (number-layers) 

(do*((il(+il)) 

(layer-list (cons (make-instance layer) 0) 

(cons (make-instance 'layer) layer-list))) 

((> i (- number-layers 1)) (reverse layer-list)))) 
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;;ACTIVATE 

;;sets the output-value of the network to the value of the last layer output-value by calling 
; ;activate-network 

(defmethod activate ((my-network network) my-network-input) 

(set-network-input my-network my-network-input) 

(activate-network my-network) 

(setf(output-vector my-network) 

(output-vector (first (last (node-list my-network))))) 

) 

;;SET NETWORK INPUT 

;;Sets network input vector 

(defmethod set-network-input ((my-network network) network-input) 

(setf(input-vector my-network) network-input) 

(setf(input-vector (first (node-list my-network))) network-input) 

) 

? ?~     —————————— 

;;ACTIVATE NETWORK 

;; Activates network by sending one layer at a time to initialize-layer 

(defmethod activate-network ((my-network network)) 

(do* ((i 0 (+ i 1)) 
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(output-layer (activate-layer (first (node-list my-network))) 

(if (nth i (node-list my-network)) 

(activate-layer (nth i (node-list my-network))))) 

) 

((> i (- (length (node-list my-network)) 1))) 

(if (nth (+ i 1) (node-list my-network)) 

(setf(input-vector (nth (+ i 1) (node-list my-network))) 

output-layer)))) 
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APPENDIX D: SOURCE CODE (BACK PROPAGATION) 

;;backprop.lsp Franz Common Lisp 

;;JeffMay 

;;21 Mar 97 

;;Contains the functions that run the back propagation algorithm 

;; Copyright © 1997 Jeff May 

;TRAIN 

;Repeat process until total error is within acceptable level 

(defun train (my-network input-vector acceptable-error) 

(do* ((error (train-set my-network input-vector) 

(train-set my-network input-vector)) 

) 

((< error acceptable-error) 'done) 

(format t "Total Error ~A~% " error))) 

;;TRAIN-SET 

;;Total Error = Total Error + Total Output Error (current-error) 

(defun train-set (my-network input-vector) 

(do* ((i 0 (+ i 1)) 
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(current-error (compute-error 

(train-network my-network (first (first input-vector)) 

(second (first input-vector)))) 

(if (nth i input-vector) 

(compute-error (train-network my-network 

(first (nth i input-vector)) 

(second (nth i input-vector))) 

))) 

(total-error current-error 

(if (nth i input-vector) 

(+ total-error current-error))) 

) 

((> i (- (length input-vector) 2))total-error) 

)) 

COMPUTE ERROR 

Total Output Error = sum(output errors) 

(defun compute-error (error-vector) 

(let* ( 

(vector (mapcar #'abs error-vector)) 

(sum (mapcar #'+ vector)) 

) (first sum)) 

) 
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TRAIN NETWORK 

(defmethod train-network ((my-network network) input-list expected-output) 

(activate my-network input-list) 

(let* ((output-error-vector (calc-output-error expected-output 

(output-vector my-network))) 

(hidden-layer-error-vector 

(hidden-layer-errors output-error-vector (reverse (node-list 

my-network)))) 

) 

(calculate-weight-change (reverse (node-list my-network)) 

(cons output-error-vector 

hidden-layer-error-vector)) 

(set-neuron-weights (node-list my-network)) 

(output-vector (first (last (node-list my-network)))) 

output-error-vector 

)) 

CALC-OUTPUT-ERROR 

Output Error = Expected - Actual 

(defun calc-output-error (exp-output calc-output) 

(mapcar #'- exp-output calc-output)) 
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HIDDEN LAYER ERRORS 

(defun hidden-layer-errors (error-vector layer-list) 

(do* ((i 0 (+ i 1)) 

(new-error-vector 

(cons (calc-final-error 

(calc-inc-errors error-vector 

(conv-weight-list (weight-vector (first layer-list))) 

) 

(first layer-list)) 

0) 
(cons (calc-final-error 

(calc-inc-errors error-vector 

(conv-weight-list (weight-vector (nth i layer-list))) 

) 

(nth i layer-list)) 

new-error-vector) 

) 

) 

((> i (- (length layer-list) 2)) (reverse new-error-vector)))) 
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CALC-FINAL-ERROR 

(definethod calc-fmal-error (incoming-error-vector layer) 

(let ((vectorl (input-vector layer))) 

(mapcar #'calculate-final-error vectorl incoming-error-vector) 

) 

) 

; CALCULATE FINAL ERROR 

;FinErr = IncErr * Derivative_of_activationJunction 

, * 
}""     — ~-— 

(defun calculate-final-error (node-value incoming-error) 

(* incoming-error node-value (-1 node-value))) 

 * 
?~  ——~—   — 

; Calculate Incoming Errors 

;IncErr = sum(OutErr * weights) 

(defun calc-inc-errors (output-error-vector output-weights) 

(do* ((i 0 (+ i 1)) 

(inc-error (cons (my-summation output-error-vector 

(first output-weights)) 

0) 
(cons (my-summation output-error-vector 

(nth i output-weights)) 
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inc-error)) 

) 

((> i (- (length output-weights) 2)) (reverse inc-error))) 

CACULATE WEIGHT CHANGE 

(defun calculate-weight-change (layer-list error-vector-list) 

(if (first layer-list) 

(setf(weight-vector (first layer-list)) 

(calc-wt-chg (first layer-list) (first error-vector-list) 

(weight-vector (first layer-list))) 

) 

) 

(if (first layer-list) 

(calculate-weight-change (cdr layer-list) (cdr error-vector-list)) 

) 

) 

CALC-WT-CHG 

(defun calc-wt-chg (my-layer error-vector weight-vector-list) 

(do* ((i 0(+ i 1)) 

(weightl (cons 

(change-weight 

(calculate-delta-weight *step* 
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(first error-vector) (input-vector my-layer)) 

(first weight-vector-list)) 

0) 
(cons (change-weight 

(calculate-delta-weight *step* 

(nth i error-vector) (input-vector my-layer)) 

(nth i weight-vector-list)) 

weight 1)) 

) 

((> i (- (length error-vector) 2)) (reverse weightl)) 

)) 

;; CALCULATE DELTA WEIGHT 

;; delta_weight = b * OutErr * InputValues 

 * 

(defun calculate-delta-weight (beta-shift error arc-weight) 

(do* ((i 0 (+ i 1)) 

(delta-weight (cons (* beta-shift error (first arc-weight)) ()) 

(cons (* beta-shift error (nth i arc-weight)) delta-weight)) 

) 

((> i (- (length arc-weight) 2)) (reverse delta-weight)) 

)) 
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;; CHANGE WEIGHT 

;; weight = weight + deltajweight 

.. * 

(defun change-weight (vector 1 vector2) 

(mapcar #'+ vector 1 vector2)) 

;SET NEURON WEIGHTS 

(defun set-neuron-weights (layer-list) 

(do*((kO(+kl))) 

((> k (- (length layer-list) 1))) 

(do*((iO(+il))) 

((> i (- (length (node-list (nth k layer-list))) 1))) 

(setf(weight-vector (nth i (node-list (nth k layer-list)))) 

(nth i (weight-vector (nth k layer-list)))) 

))) 

; CONVERT WEIGHTIEST TO BACKPROP_WEIGHT LIST 

; conv_weight_list 

; takes (1 2 3) (4 5 6) and makes (1 4) (2 5) (3 6) 

(defun conv-weight-list (x) 

(apply 'mapcar #'list x)) 
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APPENDIX E: SOURCE CODE (AMMO-RECOGNITION) 

? ?~     ————- - 

;;ammo-rec.lsp 

;; Jeff May 

;;21Mar97 

;;Contains the user interface functions 

;; Copyright © 1997 Jeff May 

;;AMMO-RECOGNITION sets the learning rate, called step, to .2. Output-type-list establishes 
;;what the order of the output. Ammo-parameters is a list that contains the number of neurons 
;;in the first layer, length 81mm, weight list, (), initial input values, 81mm, the number of 
;;neurons in the nest layer, length output-type-list, initial input values for the second layer, 
;;81mm and weight vector for the second layer neurons, (). Setf ammo-network creates an 
;;network object called ammo-network. 

(defun ammo-recognition () 

(defparameter *step* .2) 

(setf output-type-list'("81mm" "60mm" "105mm" "105heat" "3.5in")) 

(format t "In build-my-input ~%") 

(build-my-input) 

(setf ammo-parameters (list(list (length 81mm) 81mm ()) 

(list (length output-type-list) 81mm ()))) 

(format t "In make-instance ~%") 

(setf ammo-network (make-instance 'network)) 

(format t "In initialize ~%") 

(initialize-network ammo-network ammo-parameters) 
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(format t "In train ~%") 

(train ammo-network (build-ammo-input) '.2) 

(output-file "data/ammo-wgts.dat") 

(save-weights ammo-network) 

) 

LOAD-AMMO-NET 

Loads a pre-existing network object and calls it ammo-network. 

(defun load-ammo-net (wgts) 

(setf output-type-list '("8lmm" "60mm" "105mm" "3.5in" "105heat")) 

(build-my-input) 

(setf parameters (list (list (length t3-5in) t3-5in (first wgts)) 

(list (length output-type-list) t3-5in (second wgts)))) 

(setf ammo-network (make-instance 'network)) 

(initialize-network ammo-network parameters) 

) 

RETRAIN-AMMO-NET 

Allows for a method of retraining a network with the existing weights and a different learning 
rate as well as a different error 

(defun retrain-ammo-net (wgts) 

(defparameter *step* .1) 

(setf output-type-list'("81mm" "60mm" "105mm" "3.5in" "105heat")) 
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(build-my-input) 

(setf parameters (list (list (length t3-5in) t3-5in (first wgts)) 

(list (length output-type-list) t3-5in (second wgts)))) 

(setf ammo-network (make-instance 'network)) 

(initialize-network ammo-network parameters) 

(train ammo-network (build-ammo-input) M) 

(output-file "daWammo-wgts.dat") 

(save-weights ammo-network) 

) 

AMMO-NET 

Activates ammo-network, calls determine-output and prints what piece of ammo the net has 
determined the input is and with what value. A value of 1.0 is the max. This function sends 
the test data through the network. 

(defun ammo-net() 

(format t "input: 60mm output: ~A~% " 

(determine-output(activate ammo-network tst60mm))) 

(format t "input: 81mm output: ~A~% " 

(determine-output(activate ammo-network tst81mm))) 

(format t "input: 105mm arty output: ~A~% " 

(determine-output(activate ammo-network tstl05mm))) 

(format t "input: 3.5in rocket output: ~A~% " 

(determine-output(activate ammo-network tst3-5in))) 

(format t "input: 105mm heat output: ~A~% " 

(determine-output(activate ammo-network tstheat)))) 
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BUILD-MY-INPUT 

Creates the variables that contain the input data. 

(defun build-my-input 0 

(setf 60mm (build-input "../data/60mma.dat")) 

(setf 81mm (build-input "../data/81mm.dat")) 

(setf 105mma (build-input "../data/105mmarty.dat")) 

(setf 3-5in (build-input "../data/3-5in.dat")) 

(setf 105heat (build-input "../data/105-heat.dat")) 

(setf t3-5in (build-input "../data/t3-5in.dat")) 

(setf t8 lmm (build-input "../data/t81mm.dat")) 

(setf tl05heat (build-input "../data/tl05heat.dat")) 

(setf t60mm (build-input "../data/t60mm.dat")) 

(setf tl05mm (build-input "../data/tl05mm.dat")) 

(setf tst60mm (build-input "../data/tst60mm.dat")) 

(setf tstl05mm (build-input ,,../data/tstl05mm.dat")) 

(setf tst3-5in (build-input "../data/tst3-5in.dat")) 

(setf tstheat (build-input "../data/tstheat.dat")) 

(setf tst81mm (build-input "../data/tst81mm.dat")) 

) 
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;BUILD-AMMO-INPUT 

;Builds the training sets with the expected output attached to each ammo variable 

(defun build-ammo-input 0 

(list 

(list81mm'(100 0 0)) 

(list 60mm '(0 10 0 0)) 

(list 105mma*(00 100)) 

(listl05heat'(0 00 10)) 

(list 3-5in'(0000 1)) 

(listt81mm'(10 0 00)) 

(listt60mm'(0 100 0)) 

(listtl05mm'(00 100)) 

(listtl05heat'(000 10)) 

(listt3-5in'(0 00 0 1)))) 

3 ——————       ——-— 

;DETERMINE -OUTPUT 

;Takes the max number of the output list and prints the corresponding string from the output- 
;type-list. 

(defun determine-output (output-list) 

(let ((answer (eval (append '(max) output-list)))) 

(format t "~A~% " answer) 

(nth(position answer output-list) output-type-list))) 
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ANN 

Compiles and loads all of the files needed to run the network 

(defun ann () 

(compile-file "neuron") 

(load "neuron") 

(compile-file "layer") 

(load "layer") 

(compile-file "network") 

(load "network") 

(compile-file "backprop") 

(load "backprop") 

(compile-file "ammo-rec") 

(load "ammo-rec") 

(compile-file "readnet") 

(load "readnet") 

(compile-file "out-data") 

(load "out-data")) 
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OUTPUT-FILE 

Creates the output file for the weights of the network 

(defun output-file (file-name) 

(setf output-path (make-pathname :name file-name)) 

(setf out-str (open output-path direction -.output 

:if-exists supersede)) 

) 

SAVE-WEIGHTS 

Writes the weights to the above file. 

(defmethod save-weights ((my-network network)) 

(do* ((i 0 (+ i 1)) 

(weightl (weight-vector (first (node-list my-network))) 

(list (weight-vector (nth i (node-list my-network))) weightl)) 

) 

((> i (- (length (node-list my-network)) 2)) 

(format out-str "~A~%" (reverse weightl))) 

) 

(close out-str)) 
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BUILD-INPUT 

Opens the input file and reads the data in. 

(defun build-input (data-path) 

(setf path (make-pathname :name data-path)) 

(setf str (open path rdirection :input 

:if-exists supersede)) 

(do* ((str-line (read-line str nil 'eof) 

(read-line str nil 'eof)) 

(ammo-list (list (read-from-string str-line)) 

(if (eql str-line'eof) 

ammo-list 

(cons (read-from-string str-line) ammo-list))) 

) 

((eql str-line 'eof) (close str) (reverse ammo-list)) 

) 
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BUILD-WEIGHTS 

Opens and reads in the weight values 

(defun build-weights (data-path) 

(setf weight-path (make-pathname :name data-path)) 

(setf weight-str (open weight-path direction :input 

:if-exists :supersede)) 

(setf my-weightsl (read-line weight-str nil)) 

(close weight-str) 

) 
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APPENDIX F: INPUT DATA 

4.2 5.1 6.0 7.0 8.4 10.3 12.4 14.9   17.5 21.0 24.8 28.9 30.9 32.6 32.9 31.6 28.8 25.0 21.4 17.5 14.8 11.8   9.8  7.6  6.6  5.2  4.8  4.1   3.9  2.8 2.2 

4.2 5.3 6.3 7.4 8.9 11.0 13.1 15.9   18.9 23.0 27.3 31.6 33.7 35.3 35.2 33.7 31.1 26.8 22.6 18.2 15.2 12.1  10.0 7.9  6.7   5.3 4.9  4.1    3.9  2.8  2.2 

4.3 5.5 6.5 7.6 9.1 11.1 13.5 16.5 19.7 24.0 28.4 32.6 34.7 35.9 35.9 34.3 31.5 27.0 22.0 18.0 14.9 12.0 9.8 7.9 6.7 5.3 4.8 4.1 3.9 2.7 2.2 

4.3 5.3 6.5 7.4 9.0 10.9 13.4 16.2 19.5 23.4 27.9 32.0 34.1 34.7 34.6 32.5 28.4 24.0 20.0 16.0 13.7 11.1 9.1 7.4 6.5 5.2 4.6 3.9 3.6 2.5 2.2 

4.2 5.3 6.2 7.3 8.8 10.4 12.8 15.4 18.3 21.7 25.7 28.7 30.6 29.9 29.6 26.7 21.9 17.8 15.4 12.7 10.8 9.3 8.0 6.6 5.9 4.8 4.3 3.8 3.5 2.5 2.2 

4.2 5.0 5.9 6.9 8.2 9.5 11.4 13.5 15.8 18.1 20.7 21.9 22.7 19.7 19.0 13.5 11.5 9.4 9.0 8.2 8.0 7.2 6.5 5.7 5.0 4.3 4 3.5 3.3 2.3 1.9 

3.9 4.8 5.5 6.2 7.3   8.3    9.6   11.3 12.4   13.2 14.5 12.8 11.8  6.5   6.0   0.4  -0.5   -0.7    2.2    3.1   4.1   4.5  4.9  4.3   4.3   3.9   3.6 3.3   3.1   2.1   1.9 

3.8 4.3 4.9 5.5 6.5   6.9  7.7     8.0   8.3    7.3    6.7   0.9  -0.7 -8.6  -8.3 -14.7-12.1 -9.7  -12.9 -2.9  0.5   1.4 2.8   3.1   3.3   3.2   3.2  2.9  2.8 1.9   1.9 

3.5 3.9 4.3 4.7 5.2 5.2 5.7 4.8 3.8 1.1 -1.9-10.2-14.6-23.8-24.7-28.2 -23-19.4-12.4-8.3-3.5 -1.4 0.8 1.5 2.4 3.5 2.6 2.5 2.6 2.3 1.9 

3.2 3.5 3.6 3.9 4.1   3.5   3.3    1.2-0.5-5.2-11.4-21.3-30.4-35.4-36  -36-32.8-27.8-19.6  -13-7.2-4.2-1.1   0.4   1.4   1.8   2.2  2.2  2.4  2.1   1.8 

2.9 3.1 3.2 3.2 3.1   2.1   1.5-1.6-4.2-10.7-17.9-29.6  -36  -36  -36  -36  -36   -34   -25.8-17.9  -11-6.6-2.9-0.9  0.5   1.2   1.6   1.9   2.1   1.9   1.6 

2.6 2.6 2.6 2.5 2.1   1.0  0.4-3.3-6.2-13.8-20.7-33.9  -36  -36  -36  -36  -36   -36  -30-20.9-13.9-8.3-4.3-1.9-0.5   0.8   1.4   1.6   1.9   1.9   1.6 

2.5 2.4 2.2 1.9 1.4   0.4  -1.0-4.6-7.7-15.9-23.8-35.6  -36  -36  -36  -36  -36  -36  -22-22.3-15.2-9.3-5.2-2.5-0.7   0.4   1.1   1.5   1.8   1.8   1.5 

2.2 2.1 1.9 1.5 0.9-0.5-1.6-5.5-8.7-16.4-24.2   -35  -36  -36  -36  -36  -36  -36-32.2-22.3-15.5-9.3-5.5-2.8-0.9  0.4  0.9   1.2   1.6   1.5   1.3 

2.1 1.9 1.8 1.4 0.8-0.6-1.8-5.3-8.0-15.1-21.9   -32   -36    -36    -36   -36   -36-35.6-29.8-20.3-14.7    -9-5.3-2.8-0.9   0.4   0.8   1.2   1.5   1.5   1.3 

2.0 1.8 1.6 1.2 0.7-0.6-1.6-4.4-7.0-12.4-17.2-27.1-32.9   -36   -36   -36   -36-32.6-24.8-17.5-13.1-8.2-4.9-2.6-0.9   0.4   0.7   2.1   1.5   1.5   1.3 

1.9 1.6 1.5 1.2 0.7-0.5-1.4-3.6-5.7-9.8-13.8   -21-24.8-31.2-32.2-33.3-30.1-24.8-19.3-14.4   -10-6.6-3.9-2.1-0.7   0.4   0.8   1.1   1.4   1.4   1.3 

1.8 1.6 1.5 1.1 0.7-0.5-1.1-2.8-4.5-7.3-10.2-15.4-17.3-21.9-23.0-24.8-20.5-16.8-13.9   -10-7.6-4.9-3.1-1.5-0.5   0.4   0.8   1.1   1.4   1.4   1.3 

1.6 1.5 1.1 0.8 0.4-0.7-1.8-3.1    -5-7.3-10.1-12.4-15.1-16.1   -17.0-15.1-12.5-10.6-7.9-5.9-3.9-2.2-1.1-0.5   0.4   0.8   1.1   1.4   1.4   1.3 

1.6 1.5 1.4 1.1 0.8   0.4 -0.5 -1.5 -2.4 -3.9 -5.5 -7.7 -9.7   -11.7 -12.7   -13.0   -12    -10      -8     -6   -4.3 -2.8 -1.6 -0.7   0.4   0.5   0.9   1.1   1.4   1.4   1.3 

1.6 1.5 1.2 1.1 0.8   0.4 -0.5 -1.2 -2.1 -3.5 -4.9 -7.3     -9   -11.4   -12.4   -12.5 -11.5 -9.8 -7.6 -5.5 -3.9 -2.6 -1.3 -0.7   0.4   0.5   0.9   1.1   1.3   1.5   1.2 

1.5 1.4 1.2 0.9 0.7   0.4-0.5-1.4-2.2-3.9-5.3-8.4-10.3-13.4-14.5   -14.9   -13.5-11.8-8.9    -6-4.3-2.9-1.5-0.7-0.4   0.5   0.8   0.9   1.2   1.5   1.2 

1.5 1.2 1.1 0.9 0.5-0.4-0.7-1.8-2.6-4.8-6.5-10.3-12.5-16.4-17.9-18.5-16.9-14.7-11.1-7.7-5.3-3.6-1.9-0.9-0.5   0.4   0.7   0.9   1.1   1.3   1.1 

1.4 1.1 0.9 0.7 0.4-0.5-0.9-2.4-3.3-5.7-7.9-12.5-15.8-20.2-22.2   -23-20.7-18.1-13.7-9.8-6.9-4.6-2.8-1.4-0.7   0.4   0.6   0.8   1.1   1.2   1.1 

1.2 1.1 0.9 0.5 0.4 -0.7 -1.4 -2.8 -4.1 -6.7 -9.4 -14.4-18.2   -23-25.7-26.5 -24.4   -21-16.1-11.8 -8.2 -5.6 -3.3 -1.9 -0.8   0.4   0.4   0.7   0.9   1.1   1.1 

1.2 0.9 0.8 0.4 -0.5 -0.8 -1.6 -3.2 -4.8 -7.4-10.4-15.6-19.7  -25-27.8-28.8-26.7-23.1-17.9  -13 -9.3 -6.6 -3.4 -2.4 -1.1 -0.5   0.4  0.5   0.9   1.1   1.1 

1.1 0.9 0.7 0.4-0.5-0.9-1.9-3.3    -5-7.9    -11-16.1-20.5-25.5-28.7-29.5-27.7-24.1-18.9-13.9   -10    -7-4.5-2.6-1.5-0.7-0.5   0.4   0.8   1.1   1.1 

1.1 0.9 0.7 0.4 -0.5 -0.9 -2.1 -3.4 -5.2 -7.9   -11-15.5   -20-24.4-27.7-28.5-27.1-23.4-18.8   -14   -10 -7.3 -4.6 -2.9 -1.6 -0.7 -0.5   0.4   0.8   1.1   1.1 

1.1 0.8 0.5 0.4 -0.5 -0.9 -2.1 -3.3    -5 -7.4-10.3-14.2 -18.5   -22-25.3   -26-24.8-21.4-17.3-13.4 -9.6 -6.9 -4.9 -2.9 -1.6 -0.8 -0.7   0.4   0.7   0.9 0.9 

0.9 0.8 0.5 0.4 -0.5 -0.9 -1.9 -3.1 -4.6 -6.7 -9.4-12.5   -16 -19.2-21.7   -22 -20.9-18.3-14.9-11.8 -8.4 -6.2 -4.3 -2.6 -1.6 -0.7 -0.7   0.4   0.7   0.9 0.9 

0.9 0.8 0.5 0.4 -0.5 -0.8 -1.8 -2.6 -4.2 -5.9 -8.3-10.7-13.5-15.6-18.2-17.9-17.5-14.9-12.8   -10 -7.3 -5.5 -3.9 -2.4 -1.5 -0.7 -0.6   0.4   0.7   0.9 0.9 

0.9 0.8 0.5 0.4 -0.5 -0.7 -1.5 -2.2 -3.5 -4.9 -6.7 -8.6-10.7 -14.4-14.1-13.8-13.7-11.8 -10.1    -8 -6.2 -4.5 -3.3 -2.1 -1.2 -0.6 -0.5   0.4   0.7   0.9   0.9 

0.9 0.8 0.5 0.4 -0.4 -0.6 -1.1 -1.8 -2.8 -3.9 -5.3 -6.7 -8.2   -9.6   -10.7 -10.6-10.1 -9.1    -7.9 -6.5 -4.8 -3.6 -2.8 -1.5 -0.9 -0.5 -0.5   0.4   0.8   0.9   0.9 

0.9 0.9 0.7 0.4 0.4 -0.5 -0.8 -1.3 -2.1 -2.9 -3.9 -4.9    -6    -7.2   -7.6    -7.6    -7.6    -6.7    -5.9 -4.6 -3.6 -2.8 -2.1 -1.1 -0.8 -0.5 -0.5   0.5   0.8   0.9   0.9 

0.9 0.9 0.8 0.5 0.4 -0.5 -0.6 -0.8 -1.4 -2.1 -2.8 -3.6 -4.2    -5     -5.5   -5.3    -5.2    -4.6    -4.2 -3.2 -2.5 -1.9   -1.5 -0.7 -0.7   0.4   0.4   0.5   0.8   0.9   0.9 

Training Set 1: 3-5in Rocket 
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1.5 1.6 1.8 2 2.1 2.4 2.6 

1.6 1.8 1.9 2.1 2.4 2.6 2.9 

1.8 1.9 2.1 2.4 2.6 3.1 3.3 

1.9 2.1 2.3 2.5 2.8 3.3 3.8 

1.9 2.1 2.5 2.8 3.2 3.6 4.2 

1.9 2.2 2.6 2.9 3.3 3.9 4.6 

2.1 2.4 2.6 3.1 3.5 4.2 5 

2.1 2.5 2.8 3.2 3.8 4.5 5.5 

2.1 2.5 2.8 3.2 3.8 4.6 5.6 

2.1 2.5 2.8 3.2 3.8 4.5 5.6 

2.1 2.4 2.6 3.1 3.5 4.3 5 

1.9 2.3 2.5 2.8 3.3 3.9 4.5 

1.9 2.2 2.4 2.6 2.8 3.2 3.6 

1.8 2 2.1 2.2 2.4 2.5 2.6 

1.6 1.8 1.9 1.9 1.8 1.8 1.6 

1.5 1.6 1.6 1.6 1.4 1.1 0.4 

1.4 1.4 1.4 1.3 0.9 0.4 -0.5 

1.2 1.2 1.1 0.9 0.5 0.4 -0.9 

1.2 1.1 0.9 0.9 .4 -0.5 -1.2 

1.1 1.1 0.9 0.8 0.4 -0.5 -1.4 

1.1 0.9 0.8 0.6 0.4 -0.5 -1.2 

0.9 0.9 0.8 0.5 0.4 -0.5 -0.9 

0.9 0.9 0.8 0.6 0.4 -0.5 -0.8 

0.9 0.9 0.8 0.7 0.4 -0.4 -0.7 

0.9 0.9 0.8 0.7 0.4 0.4 -0.5 

0.9 0.9 0.8 0.8 0.5 0.4 0.4 

0.9 0.9 0.9 0.8 0.7 0.4 0.4 

0.9 0.9 0.9 0.8 0.7 0.4 

1 0.9 0.9 0.8 0.7 0.7 

1 0.9 0.9 0.8 0.8 

0.9 

1 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

1.1 1.1 0.9 1.1 

1.1 1.1 1.1 1.1 

1.1 1.1 1.1 1.1 

2.8  3.2  3.3   3.5  3.8  3.9  4.1   4.1   3.9  3.9  3.8  3.6  3.3   2.9  2.6  2.5   2.2   2.1   1.9   1.8   1.6 1.5 1.5 1.4 

3.2 3.6   3.9   4.1   4.5   4.8   4.8   4.8  4.9   4.6   4.3   4.2   3.9   3.3   3.1   2.8   2.5   2.2   2.1   1.9   1.6 1.6 1.5 1.5 

3.8 4.3   4.6   4.9   5.5   5.9   5.9     6     6   5.6   5.3   4.9   4.5   3.9   3.5   3.2   2.8   2.5   2.2   2.1   1.8 1.6 1.6 1.5 

4.3 4.9   5.5   5.7   6.7   7.2   7.4   7.2 7.3   6.7   6.5   5.7   5.3   4.5   3.9   3.5   3.1   2.8   2.4   2.2   1.9 1.8 1.6 1.5 

4.9 5.7  6.3   6.9   8.2  8.3  9.1     9    9  8.4  7.7   6.9  6.2  5.2  4.5   3.8  3.3   2.9  2.6  2.2   2.1 1.8 1.6 1.5 

5.5 6.7   7.4   8.4 10 10.8 11.4 11.3 11.3 10.3 9.4   7.9   7.2   5.7   4.9   4.2   3.5   3.1   2.6   2.4   2.1 1.9 1.8 1.6 

6   7.6     8.7 10.112.113  13.9 13.813.8 12.5 11.1 9.4     8   6.7   5.5   4.6   3.8   3.2   2.8   2.5   2.2 1.9 1.8 1.6 

6.6 8.4    9.7   11.4 14.115.116.4 16.215.9 14.4 12.7 10.3 8.9 7.2   5.7   4.9   3.9   3.3   2.9   2.6   2.2 2.1 1.8 1.6 

6.7 8.9 10.6 12.5 15.2 16.8 18.2 18.2 17.3 15.8 13.5 11.19.3 7.9 6 4.9 4.1 3.5 2.9 2.6 2.4 2.1 1.9 1.6 

6.7 8.9 10.6 12.5 14.8 16.617.5 17.9 16.4 15.5 13 10.8 9 7.7 5.9 4.9 3.9 3.3 2.9 2.5 2.2 2.1 1.8 1.6 

6.2 7.9   9.1   10.7 12    13    12.7 13.2 11.7 12.5 10.6   9.4    8   6.7 5.5 4.6   3.8   3.3   2.8   2.5   2.2 2.1 1.8 1.6 

5.3   6.3   6.9  7.7   6.9  6.7  4.5   2.9  3.3   6.5   5.6  6.6    6   5.5  4.6   3.9   3.5   3.1   2.6  2.4   2.2 1.9 1.8 1.6 

3.9  4.5   3.9  3.6 -0.7 -2.4 -7.2 -8.9   -8 -2.4 -0.7   2.4  2.9  3.6  3.5   3.3   2.9  2.6  2.4  2.2    2 1.8 1.6 1.6 

2.2   1.5   0.7-1.2-7.7-12.8-19.9-21.4-20.2-12.7-7.3-1.9 0.4 1.6 2.1   2.4  2.4  2.2  2.1   2.1   1.9 1.8 1.6 1.5 

0.8-0.9-3.3-6.2-14.8-20.6-29.2-30.9-29.5-213-13.9-8-3.3-0.7 0.5 1.1  1.6   1.8   1.8   1.8   1.6 1.6 1.6 1.5 

-0.7-3.1-6.7  -10-19.9-27-34-35.7-34.5-27.4-18.8-11.7-6.2-2.6-0.7 0.4 0.9 1.2   1.5   1.5   1.5 1.5 1.5 1.4 

-1.8-4.6-8.5-12.4-20.8-30.5-36-36-36-30.6-21.4-14.1-8-4.3-1.6-0.7  0.5   0.9   1.2   1.2   1.4 1.4 1.4 1.4 

-2.4-5.6  -10-14.3-22.6-31.2-35.7-36-35.6-30.9-22.2-15.1-9.3-5-2.4-1.10.4   0.5   0.9 1.11.2 1.2 1.4 1.2 

-2.6-5.5   -10-14.5-20-28.8-33.6-35.4-33.9-30.4-21.9-15.1-9.8-5.5-3.1-1.6-0.5 0.4 0.7 0.9 1.1 1.2 1.2 1.2 

-2.6-5.2-9.1-13-17.5-24.3-29.2-32-29.5-26.1-19-13.4-9.1-5.5-3.1-1.8-0.5 0.4   0.5   0.8   0.9 1.1 1.2 1.2 

-2.4 -4.5 -7.2-10.8-14.5-18.8-22.4-26-22.7-21.2-15.8-11.3 -7.9-4.9-2.8-1.6-0.5 0.4 0.5 0.8 0.9 0.9 1.1 1.2 

-2.1 -3.9 -6.1 -8.4-10.7-13.9-16.6-17.9-16.4-15.8-12.3 -8.9 -6.5-4.2-2.4-1.5-0.5 0.4 0.5 0.7 0.8 0.9 1.1 1.1 

-1.5 -2.9 -4.6 -6.5 -7.9 -9.8-11.7-12.8-11.5 -11 -8.9-6.7 -5 -3.1-1.8 -1.1-0.5 0.4   0.5   0.7   0.8 0.9   1.1 1.1 

-1.1 -2.1 -3.3 -4.3 -5.3 -6.7 -7.9 -8 -7.7 -7.4 -6.5 -4.8 -3.8 -2.2-1.2-0.8 -0.4   0.4   0.5   0.7   0.8 0.9 1.1 1.1 

-0.7 -1.4 -2.2 -3.1 -3.8 -4.5 -4.9 -5.2-4.9-4.9-4.2-3.3 -2.4 -1.5 -0.8 -0.5   0.4   0.4   0.5   0.7   0.8 0.9   1.1 1.1 

-0.5 -0.8 -1.4 -1.9 -2.2 -2.9 -3.2 -3.5-3.2-3.2-2.5-1.9 -1.4 -0.9 -0.5 -0.5   0.4   0.4   0.7   0.8   0.8 0.9 1.1 1.1 

-0.4 -0.5 -0.7 -1.1 -1.4 -1.8 -1.9 -1.9 -1.9 -1.9-1.6-1.2-0.8-0.5 -0.4   0.4   0.4   0.5   0.8   0.8   0.9 0.9 1.1 1.1 

0.4   0.4 -0.5 -0.5 -0.7 -0.9 -0.9 -1.1 -0.9 -0. -0.7 -0.7   -5 -0.4   0.4   0.4   0.5   0.7   0.8   0.9   0.9 0.9 1.1 1.1 

0.4   0.4   0.4 -0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5-0.5 0.4   0.4   0.4   0.5   0.7   0.8   0.8   0.4   0.9 0.9 1.1 1.1 

0.7   0.5   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.5   0.7   0.7   0.8   0.9   0.9   0.9   0.9 1.1 1.1 1.1 

0.8   0.7   0.7   0.5   0.5   0.4   0.4   0.4   0.4   0.4   0.4   0.5   0.7   0.8   0.8   0.8   0.8   0.9   0.9   0.9   0.9 1.1 1.1 1.1 

0.9   0.8   0.8   0.8   0.8   0.5   0.7   0.5   0.7   0.7   0.7   0.8   0.8   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9 1.1 1.1 1.1 

0.9   0.9   0.9   0.9   0.8   0.8   0.8   0.8   0.8   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   1.1    1.1 1.1 1.1 1.1 

0.9   0.9   1.1   0.9   0.9   0.9   0.9   0.9   0.9   1.1   0.9   0.9   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1-1 11 1-1 1-1 

1.1   1.1   1.1   1.1   1.1   0.9   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1-2   1.1   1.1   1.1   1.1   1-1   11    1-1 1-1 11 '■' 

Training Set 1: 60mm Mortar 
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3.3 3.8 4.3 4.9 5.6 6.5 7.4 8.7 10 11.5 12.8 13.9 15.2 16.2 15.6 15.9 14.2 13.2 12 10.7 9.7 8.2 7.2 6.2 5.5 4.6 4 3.6 3.2 2.9 2.6 

3.5 4.1 4.6 5.5 6.2 7.2 8.4 9.7 11.7 13.2 15.1 16.9 19 19.5 19.3 19.5 17.9 16.2 14.5 13 11.3 9.4 8 6.9 6.2 5.2 4.3 3.9 3.5 3.1 2.8 

3.8 4.3 5 5.9 6.7 7.9 9.6 11 13.7 15.8 18.6 21.2 23 24.3 24 24.3 21.7 19.6 17.2 14.9 13 10.8 8.9 7.4 6.7 5.5 4.8 4.2 3.6 3.2 2.9 

3.9 4.6 5.3 6.5 7.3 8.7 10.4 12.4 15.2 17.9 21.4 24.1 27.1 28.5 28.4 28.4 25.5 22.6 19.7 16.8 14.7 11.8 9.7 8 7.2 5.9 5 4.3 3.8 3.3 3.1 

4.2 4.8 5.6 6.7 7.9 9.4 11.3 13.5 16.9 19.6 23.7 27.8 30.8 31.8 32.5 31.6 28.9 25.5 22 18.5 16.1 12.8 10.4 8.6 7.6 6.2 5.2 4.5 3.9 3.5 3.1 

4.2 4.9 5.7 6.9 8.2 9.8 11.8 14.1 17.8 21.2 25.4 29.5 32.6 34 34.3 33.6 30.9 27.7 23.8 19.7 16.9 13.9 11.1  9 7.9 6.5 5.5 4.6 4.1 3.5 3.2 

4.3 5 5.9 7 8.4 10 12 14.4 18.1 21.4 25.8 29.8 32.8 34.2 34.5 33.5 31.2 28.2 24.3 20.2 17.1 14.4 11.3 9.3  8 6.6 5.5 4.8 4.1 3.6 3.2 

4.3 5 5.9 7 8.3 9.8 12 14.1 17.5 20.7 24.3 28.1 30.6 31.9 31.8 30.5 29.4 27 23.4 19.7 16.8 14.1 11.1 9.1  8 6.6 5.6 4.8 4.1 3.6 3.2 

4.2 4.9 5.7 6.7  8 9.4 11.3 13.2 16.1 18.6 21 23.4 24.7 26.4 24.8 24.7 23.6 23.1 20.3 17.9 15.6 12.8 10.8 8.9 7.9 6.5 5.5 4.6 4.1 3.6 3.2 

4.2 4.8 5.5 6.5 7.6 8.9 10.4 11.7 13.9 15.8 16.2 15.9 15.2 14.8 13.5 14.5 16.2 17.6 17.1 15.2 13.9 11.5 9.8 8.3 7.4 6 5.3 4.5 3.9 3.5 3.2 

3.9 4.5 5 6.6 7 7.9 8.9 10 10.8 11.5 11.7 8 2.6 1.5 -1.1 1.4 5.7 9.6 11.7 11.7 11.4 9.7 8.7 7.4 6.9 5.6 4.9 4.3 3.9 3.3 3.2 

3.8 4.2 4.6 5.3 6.2 6.7 7.2 7.6 7.7 7 3.3 -1.2 -84-12.7-14.2 -12 -5.3 0.4 5.2 6.7 8.4 7.6 7.2 6.2 6 5 4.5 4.1 3.6 3.2 3.1 

3.5 3.9 4.2 4.6  5 5.5 5.3 5.3 3.6 1.8-4.8-11.3-19.2 -26-29.8-26.1-16.8-7.9-1.5 7.9 3.9 5.5 5.6 5.2  5 4.5 4.2 3.6 3.3 3.2 2.9 

3.2 3.3 3.6 3.9 4.1 3.8 3.5 2.6-0.4-2.6-10.4-18.9-31.9-35.9 -36-35.6-27.8-17.5-7.6-3.5 0.4 2.1 3.5 3.8 3.9 3.8 3.6 3.3 3.2 2.8 2.8 

2.9 2.9 3.1 3.1 2.9 2.4 1.6-0.4-3.4-8.9-16.2-27.8 -36 -36 -36 -36-35.3-25.4-15.5-8.4-3.8-0.5 1.1 2.2 2.9 2.9 3.1 2.9 2.8 2.6 2.6 

2.5 2.6 2.4 2.2 2.1 1.1 -0.4 -2.8 -7.6-12.9-23.4-33.2 -36 -36 -36 -36 -36 -32-21.2-13.4 -7.4 -2.8 -0.7 9 1.8 2.2 2.4 2.5 2.5 2.4 2.4 

2.4 2.2 1.9 1.6 1.1 -0.4-1.9-4.8-10.7-15.2-27.7 -36 -36 -36 -36 -36 -36-35.6-25.7-16.9-10.7 -5-2.4-0.5 0.7 1.6 1.9 2.1 2.2 2.2 2.2 

2.1 1.8 1.4 1.1 0.4-1.1 -3.8-6.7-12.4-19.2-30.9 -36 -36 -36 -36 -36 -36 -36-29.6-20.2-13.2 -7-3.8-1.2-0.5 0.9 1.4 1.8 1.9 2.1 2.1 

1.8 1.5 1.1 1.4 -0.5 -1.9 -4.6 -8.3-13.8 -19-31.9 -36 -36 -36 -36 -36 -36 -36-32.5 -23-15.1 -8.7 -5.2 -2.4 -0.9 0.4 0.9 1.4 1.6 1.8 1.9 

1.6 1.2 0.8 0.4-1.1-2.5 -5-8.6-13.9-20.5 -32 -36 -36 -36 -36 -36 -36 -36-32.9-23.6-16.8-9.4 -6-3.1-1.4-0.5 0.5 1.1 1.5 1.6 1.6 

1.5 0.9 0.5 -0.5 -1.2 -2.9 -5.5 -8.9-14.2-20.2-31.1 -36 -36 -36 -36 -36 -36 -36-32.6-24.8-17.2 -10 -6.4 -3.5 -1.8 -0.5 0.4 0.9 1.2 1.5 1.6 

1.2 0.9 0.4 -0.5 -1.4 -2.9 -5.5 -8.4-13.5-18.8-28.4 -36 -36 -36 -36 -36 -36 -36-30.9-22.7-16.2 -10 -6.4 -3.6 -2.1 -0.7 0.4 0.8 1.1 1.4 1.5 

1.2 0.8 0.4 0.5-1.4-2.8 -5-7.9-12.4-16.9-25.1-33.3 -36 -36 -36 -36 -36-34.7-28.1-20.3-14.7-9.4 -6-3.5-2.1 -0.7 0.4 0.7 0.9 1.2 1.4 

1.1 0.8 0.4 0.5 -1.2 -2.5 -4.3 -6.7-10.7-13.9-20.6-27.4-33.9 -36 -36 -36-34.6-29.5 -23-17.2-12.5 -8.3 -5.5 -3.2 -1.8 -0.7 0 0.7 0.9 1.2 1.4 

1.1 0.8 0.4 0.5-1.1-2.2-3.8-5.7-8.9-11.7-16.2-21.6 -26-31.1-30.9-31.1-26.1-22.6-18.2-13.8-10.3-6.9-4.5-2.5-1.5-0.5 0.4 0.7 0.9 1.1 1.4 

1.1 0.8 0.4 -0.4 -0.8 -1.6 -3.2 -4.6 -7.3 -9.1-12.5-16.4-20.3-22.3-24.3-21.4-19.9-17.6-13.9 -11 -8.4 -5.6 -3.8 -2.1 -1.2 -0.5 0.4 0.7 0.9 1.1 1.4 

1.1 0.8 0.5 0.4 -0.7 -1.2 -2.4 -3.5 -5.3 -6.9 -9.3-12.3-14.2-15.8-17.2-15.4-14.5 -13-10.6 -8.2 -6.3 -4.3 -2.8 -1.5 -0.8 -0.5 0.4 0.8 0.9 1.2 1.2 

1.2 0.9 0.7 0.4 -0.5 -0.7 -1.6 -2.5 -3.4 -4.9 -6.6 -8.6-10.4-11.1-11.5-10.6 -10 -9.4 -7.7 -6 -4.5 -3.1 -1.9 -0.9 -0.5 0.4 0.5 0.9 0.9 1.2 1.2 

1.2 0.9 0.8 0.5 0.4 -0.5 -0.9 -1.6 -2.6 -3.2 -4.6 -5.9 -6.7 -7.7 -7.6 -7.2 -6.9 -6.5 -5.3 -4.2 -3.2 -2.1 -1.1 -0.7 -0.5 0.4 0.7 0.9 1.1 1.2 1.2 

1.2 1.1 0.9 0.7 0.4 -0.4 -0.5 -0.9 -1.6 -2.2 -3.1 -3.9 -4.3 -5.3 -4.8 -4.9 -4.5 -4.1 -3.3 -2.8 -2.1 -1.4 -0.8 -0.5 0.4 0.4 0.8 0.9 1.1 1.2 1.4 

1.2 1.1 1.1 0.8 0.5 0.4 -0.5 -0.5 -0.9 -1.2 -1.8 -2.5 -2.8 -3.2 -3.2 -3.1 -2.9 -2.6 -2.1 -1.6 -1.1 -0.7 -0.5 0.4 0.4 0.7 0.9 1.1 1.2 1.4 1.4 

1.4 1.2 1.1 0.9 0.8 0.5 0.5 0.4 -0.5 -0.7 -0.9 -1.2 -1.6 -1.8 -1.8 -1.6 -1.6 -1.4 -1.1 -0.7 -0.7 -0.5 0.4 0.5 0.7 0.8 1.1 1.2 1.2 1.4 1.4 

1.5 1.2 1.2 1.1 0.9 0.8 0.5 0.4 0.4 -0.5 -0.5 -0.7 -0.7 -0.8 -0.8 -0.8 -0.7 -0.7 -0.5 -0.5 -0.4 0.4 0.4 0.7 0.9 0.9 1.2 1.2 1.4 1.4 1.4 

1.5 1.4 1.2 1.2 1.1 1.1 0.8 0.7 0.5 0.4 0.4 -0.4 -0.4 -0.5 -0.4 -0.4 -0.4 -0.4 0.4 0.4 0.4 0.5 0.8 0.9 1.1 1.1 1.2 1.2 1.4 1.4 1.4 

1.5 1.4 1.4 1.2 1.2 1.2 1.1 0.9 0.8 0.7 0.7 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.5 0.8 0.9 1.1 1.1 1.1 1.4 1.4 1.4 1.4 1.4 

Training Set 1: 81mm Mortar 

97 



2.4 2.6 2.6 2.8 2.8   3.1   3.2   3.2   3.3   3.2   3.2   3.1     3   2.9   2.8   2.7   2.6   2.6   2.6   2.6   2.6   2.6   2.6   2.5   2.5   2.4   2.5   2.2   2.2   2.1   2.1 

2.6 2.8 2.8 3.1 3.1   3.2  3.3   3.3   3.5  3.3   3.3   3.2  3.1     3   2.8  2.6  2.6  2.6  2.6  2.6  2.6  2.6  2.6  2.6  2.6   2.5   2.5   2.4  2.4  2.2   2.1 

2.8 3.1 3.1 3.3 3.4  3.6  3.8   3.8   3.8  3.7  3.6  3.2  3.1   2.9  2.6  2.6  2.6  2.5   2.6  2.6  2.6  2.8  2.8  2.8  2.8   2.6  2.6  2.5  2.4  2.2  2.2 

3.1 3.3 3.3 3.6 3.8 3.9 4.1 4.1 4.1 3.9 3.7 3.2 2.9 2.6 2.2 2.2 2.2 2.2 2.4 2.5 2.6 2.8 2.8 2.9 2.9 2.8 2.8 2.6 2.6 2.4 2.4 

3.3 3.5 3.6 3.9 4.2 4.3 4.5 4.3 4.3 4.1 3.8 3.1 2.5 1.9 1.4 1.5 1.4 1.6 1.9 2.4 2.6 2.8 2.9 3.1 3.1 3 2.9 2.8 2.6 2.6 2.4 

3.6 3.9 3.9 4.3 4.5   4.8  4.9  4.9  4.7   4.3   3.6  2.6   1.6  0.7   0.4  0.4  0.4  0.7   1.2    2   2.4  2.8  3.1   3.2  3.2   3.2   3.1   2.9   2.8  2.6  2.6 

3.9 4.2 4.3 4.9     5   5.3     5   5.3   5.1   4.5   3.5   2.1   0.4 -0.7 -2.2 -1.9 -1.6 -0.7   0.4   1.5   2.1   2.6   3.1   3.3   3.3   3.3   3.3   3.2   3.1   2.8   2.6 

4.2 4.5 4.7 5.3 5.6     6   6.2     6   5.6   4.6   3.2   0.9 -1.5 -3.3 -5.5 -4.9 -4.5 -2.8 -0.9   0.9   1.8   2.6   3.2   3.3   3.6   3.5   3.5   3.3   3.2   3.1   2.8 

4.5 4.9 5 5.9 6.3   6.7     7   6.7   6.3     5   3.1 -0.5    -4 -6.9 -9.4 -8.7 -7.4 -5.3 -2.4   0.4   1.5   2.6   3.3   3.6   3.9   3.9   3.8   3.5   3.4   3.2   3.1 

4.9 5.3 5.6 6.5     7   7.6   7.9   7.9   7.3   5.7   3.2 -0.9    -6 -9.8-13.3-12.4-10.3 -7.3 -3.5 -0.5   1.4   2.6   3.5   3.9   4.1   4.2     4   3.8   3.6   3.3   3.2 

5.2 5.7 6 7.1 7.9   8.5   9.1   9.1   8.7   7.1   4.1 -0.7 -7.3-12.3-16.2-15.5-13.1 -9.4 -4.6 -0.7   1.2   2.8   3.9   4.2   4.5   4.3   4.3   4.1   3.8   3.5   3.3 

5.5 6.2 6.5 7.7 8.6   9.4 10.1  10.6 10.4     9   5.9   0.7 -6.6-13.1-16.8-17.1-14.2-10.3 -4.9 -0.7   1.6   3.2   4.3   4.6   4.9   4.8   4.5   4.3     4   3.8   3.3 

5.6 6.6 6.8 8.3 9.3  10.3  11.4 12.1  12.5 11.4   8.7   3.8 -3.8-10.8-14.2-15.9-13.5-10.1 -4.5 -0.4   2.2   3.8   4.9   5.2   5.3     5   4.9   4.5   4.2   3.9   3.6 

5.9 6.9 7.2 8.7 9.8 11.1  12.5 13.5 14.5 13.9 12.5  8.2  2.2 -5.3 -8.4-12.6-10.8 -8.3 -3.1   0.9  3.2  4.5   5.5   5.6   5.6   5.5   5.2  4.8  4.5  4.1   3.8 

6.2 7 7.4 9 10.4 11.7 13.3 14.8 15.8 16.1  15.2 12.8  8.6   1.9 -1.1 -6.9 -6.9   -5 -1.2  2.2  4.2   5.3   6.2  6.2  6.2   5.7   5.5     5  4.6  4.2  3.9 

6.2 7.2 7.6 9.2 10.6    12 13.5 15.1  16.2 16.8 16.6 15.2 12.4  8.7  4.3 -1.4 -2.8 -2.2   0.4   2.9  4.9   6.2  6.6  6.6  6.5    6   5.6   5.2  4.8  4.3   3.9 

6.2 7.2 7.7 9.2 10.6 11.8 13.3 14.8 15.5 15.7 15.5 13.5 11.5   9.3  4.1   0.5 -1.5 -1.2  0.9  3.6   5.3   6.3   6.7   6.7  6.6  6.2   5.7   5.3   4.9  4.4   3.9 

6.2 7.2 7.6 9.1 10.3 11.4 12.5 13.5 13.4    13 11.2  9.6  4.5  2.7   -5 -5.5 -5.7 -3.5 -0.7   2.8  4.8    6  6.6   6.7  6.6  6.3   5.7   5.3  4.9  4.5    4 

6.2 7 7.4 8.9 9.8 10.7 11.5 11.8 11.1     9     6   0.4 -7.4-13.1-22.3-19.2-16.9 -9.8    -5   0.4   3.2   5.2     6   6.5   6.3   6.2   5.6   5.2   4.9   4.5     4 

6 6.9 7.3 8.4 9.3    10 10.1   9.9   8.3   5.5-0.9-9.7-22.7-30.6   -36-33.2-28.8-19.8-10.9-3.1   1.1   3.9   5.2   5.7     6   5.9   5.5   5.2   4.8   4.3   3.9 

5.9 6.6 7 7.9 8.6    9   8.9  8.1   5.6   1.5 -6.6-18.5-33.7  -36  -36  -36  -36-28.8-16.5 -6.9 -0.9  2.2  3.9   5.2   5.5   5.5   5.3   4.9  4.6  4.3   3.9 

5.6 6.3 6.6 7.4 7.9   8.2   7.9   6.5   3.9 -1.2 -9.6-23.4   -36   -36   -36   -36   -36-33.5-20.2 -9.3 -2.6   1.1   3.2   4.3   4.8     5   4.9   4.6   4.3   4.2   3.8 

5.5 6 6.3 6.9 7.2   7.3   6.9   5.3   2.6 -2.2-10.2-23.6   -36   -36   -36   -36   -36-33.6-20.5 -9.7 -3.3   0.4   2.4   3.6   4.2   4.5   4.5   4.3   4.2   3.9   3.6 

5 5.6 5.9 6.3 6.6   6.6   5.9   4.5   1.9-2.4-9.3-20.9-34.5   -36   -36   -36-35.9-28.9-16.8-7.9-2.9-0.5   1.8   3.1   3.5   3.9     4   4.1   3.8   3.8   3.5 

4.9 5.3 5.5 5.7 5.9   5.7   4.9   3.3   0.9 -3.1 -9.1   -19-31.3   -36   -36-35.2   -27-19.1 -9.7 -5.3 -2.1 -0.5   1.2   2.4     3   3.4   3.5   3.7   3.5   3.5   3.3 

4.5 4.9 5 5.2 5.3   4.9   4.1   2.4-0.5-4.2   -10-19.2-29.9-35.2-35.7-30.6   -20-12.4-7.2-4.3-2.4-0.8   0.4   1.6   2.4   2.9   3.1   3.3   3.3   3.3   3.2 

4.3 4.5 4.6 4.6 4.6 4.2 3.1 1.1 -1.6 -6.3-12.5 -22-32.6 -36 -36-33.9-24.6-14.5 -10 -6.2 -4.3 -2.1 -0.8 0.7 1.5 2.2 2.6 2.9 3.1 3.1 2.9 

3.9 4.2 4.3 4.2 3.9 3.3 1.8 -0.5 -3.5 -8.9-16.1-27.2 -36 -36 -36 -36 -36-29.5-18.7-11.3 -8.2 -4.5 -2.2 -0.5 0.7 1.6 2.1 2.6 2.6 2.8 2.8 

3.8 3.9 3.9 3.7 3.3   2.6   0.9-1.5-4.9-10.8-18.5-30.4   -36   -36   -36   -36   -36   -36-29.5-18.2-11.8-7.2    -4-1.5-0.4   1.1   1.6   2.2   2.4   2.6   2.6 

3.5 3.5 3.5 3.2 2.8 1.9 0.4-2.4 -6-12.3-20.7-32.8 -36 -36 -36 -36 -36 -36-34.9-22.8-14.5 -9-4.9-2.1 -0.7 0.7 1.4 1.9 2.2 2.4 2.4 

3.2 3.3 3.2 2.9 2.4 1.5-0.5-2.9-6.2-12.2-20.2 -32 -36 -36 -36 -36 -36 -36-35.6-25.3-15.9 -10-5.6-2.6-0.9 0.4 1.1 1.6 2.1 2.2 2.4 

3.1 3.1 2.9 2.6 2.1 1.2-0.5-2.6-5.7-10.8-17.5-28.2 -36 -36 -36 -36 -36 -36 -33-24.1-15.2-9.8-5.6-2.8-0.9 0.4 0.9 1.6 1.9 2.1 2.2 

2.8 2.8 2.8 2.4 1.9   1.1 -0.5 -2.4 -4.6 -8.9-14.1-22.2-30.2   -36   -36   -36   -36-35.6-27.2-20.2-12.8 -8.7 -4.9 -2.5 -0.9   0.4   0.9   1.5   1.8   1.9   2.1 

2.6 2.6 2.6 2.3 1.9   1.1 -0.4-1.6-3.3-6.6-10.3-15.2-21.2-28.8-29.2-29.8-29.4   -27-19.6-15.1   -10    -7-4.1 -2.1 -0.7   0.4   0.9   1.4   1.8   1.9   2.1 

2.6 2.5 2.5 2.2 1.8   1.2   0.4-0.9-2.2-4.3-7.3   -11-13.9-17.5-18.8-19.3-19.9-17.6-13.8   -11 -7.3    -5-2.9-1.4-0.5   0.5     1   1.5   1.7   1.9   2.1 

Training Set 1: 105mm Artillery 
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2.6 2.8 3.1 3.3 3.6 4.1 4.3 4.9 5.2 5.6 5.9 6.2 6.7 7.2 7.2 7.3 7.4 7.4 7.2 6.9 6.6 6.2 5.7 5.5 4.9 4.5 4.1 3.8 3.3 3.2 2.9 

2.8 3.1 3.3 3.8 3.9 4.5 4.8 5.3 5.7 6.3 6.7 7.3 7.9 8.3 8.4 8.6 8.6 8.6 8.3 8.2 7.7 7.3 6.7 6.2 5.5 4.9 4.5 4.2 3.8 3.3 3.1 

2.9 3.2 3.5 4.1 4.3 4.9 5.2 5.9 6.5 7.2 7.7 8.4 9.1 9.6 9.8 10.7 10.6 10.3 9.8 9.8 9 8.7 7.7 7.2 6.2 5.6 5 4.5 4 3.6 3.3 

3.2 3.3 3.8 4.3 4.5 5.3 5.6 6.6 7.2 7.9 8.6 9.7 10.3 11.1 11.7 12.4 11.8 12.3 11.4 11.3 10.6 9.8 8.4 8.2 6.9 6.2 5.5 4.9 4.3 3.9 3.5 

3.3 3.6 4.1 4.6 4.9 5.7 6.2 7.2 7.7 8.9 9.4 11 11.5 12.8 13.2 13.9 13.9 14.2 13.5 13.5 11.8 11 9.6 9 7.6 6.7 5.9 5.2 4.6 4.2 3.8 

3.3 3.8 4.2 4.9  5  6 6.5 7.6 8.3 9.6 10.1 11.7 12.7 14.5 15.1 16.2 15.9 16.5 15.5 15.2 13.7 12.4 10.7 9.8 8.4 7.3 6.3 5.6 4.9 4.3 4.1 

3.4 3.9 4.3 4.9 5.3 6.2 6.7 7.9 8.7 10 10.7 12.4 13.7 16.1 17.1 18.5 18.6 19 18.2 17.3 15.8 13.9 12 11 9.3 7.9 6.7  6 5.2 4.6 4.3 

3.5 3.9 4.3 5 5.3 6.3 6.7 7.9 8.9 10 11 13.1 14.5 17.2 18.6 20.5 20.7 21.7 20.5 19.3 17.5 15.2 13.1 11.7 10 8.4 7.2 6.3 5.5 4.8 4.5 

3.5 3.9 4.3 5 5.3 6.2 6.7 7.7 8.6 9.6 10.7 12.5 14.4 17.3 19.5 21.9 22.7 23.6 22.6 21.3 19 16.1 13.9 12.1 10.3 8.7 7.3 6.5 5.6 4.9 4.5 

3.4 3.8 4.2 4.8 5.2 5.7 6.3 7.2 7.9 8.6 9.7 11.1 13 16.5 19 21.3 23.6 24.1 23.6 22 19.7 16.6 14.2 12.3 10.6 8.9 7.4 6.6 5.6 4.9 4.6 

3.3 3.6 4.1 4.5 4.8 5.3 5.6 6.2 6.7 7.7 8.4 10.1 13.4 16.6 18.3 22.7 22.9 23.3 21.4 19.6 16.5 14.1 12.3 10.6 8.7 7.4 6.6 5.6 4.9 4.6 4.6 

3.2 3.3 3.8 4.1 4.3 4.5 4.6 4.6  5 4.5 4.9 4.2 5.6 8.2 11.7 12.1 18.9 19.9 20.3 19.6 18.1 15.4 13.2 11.4 10.1 8.2 7.2 6.5 5.5 4.9 4.6 

3.1 3.2 3.3 3.6 3.8 3.6 3.6 2.8 3.1 1.2 1.1 -0.7 -0.4 -0.5 3.5 3.3 11.1 13.9 15.4 14.4 14.7 13.2 11.7 10.1 9.4 7.7 6.7 6 5.2 4.6 4.5 

2.8 2.9 2.9 2.8 2.9 2.2 1.9 0.4 -0.5 -3.1 -4.3 -7.2 -7.6-10.6 -7.9 -9.4 -1.1 3.2 6 7 7.9 9.6 9 8.2 7.6 6.7 6 5.5 4.9 4.3 4.2 

2.4 2.5 2.5 2 2.1 0.9 0.8 -2.1 -3.1 -6.2 -9.6-14.5-15.5-20.7 -22-20.9-13.8 -11 -5.3 -1.5 1.9 5.2 6.2 5.6 6.6 5.6 5.3 4.9 4.5 3.7 3.9 

2.1 2.1 1.9 1.2 1.1 -0.4 -1 -3.5 -6-12.1-13.5-20.5-25.3-29.9-32.8-33.7-29.5-21.6-16.1 -9.4-3.3 0.5 2.5 3.3 3.8 4.3 4.2 4.2 3.9 3.5 3.6 

1.8 1.6 1.4 0.5 0.4-1.2-2.5-5.7 -9-15.5 -18-26.5-32.6 -36 -36 -36 -36-32.2-26.5-16.9-10.3-3.8-1.1 0.8 1.9 2.9 3.3 3.3 3.3 3.2 3.2 

1.5 1.4 0.9 -0.5 -0.7 -2.5 -3.8 -7.9-11.4-18.8 -23-32.5 -36 -36 -36 -36 -36 -36-32.8 -25-16.8 -8.2 -4.9 -1.4 0.4 1.6 2.4 2.5 3.8 2.8 2.8 

1.2 1.1 0.4 -0.8 -1.6 -3.3 -5.5 -8.9-14.8-20.9-27.4-34.5 -36 -36 -36 -36 -36 -36 -36-31.1-22.2-12.5 -8.2 -4.1 -1.2 0.4 1.6 1.9 3.2 2.4 2.4 

1.1 0.7 0.4-1.1 -2.1 -4.2-5.9 -10-15.8-23.1-28.8-35.6 -36 -36 -36 -36 -36 -36 -36-33.6-26.1-14.7-10.6-5.6-2.6-0.7 0.8 1.1 1.6 1.9 2.1 

0.9 0.4 -0.5 -1.5 -2.6 -4.8 -6.6-10.8-16.2-24.1-29.2-35.9 -36 -36 -36 -36 -36 -36 -36 -34-27.9-16.6-11.5 -6.9 -3.5 -1.5 -0.4 0.5 1.1 1.6 1.8 

0.8 0.4 -0.5 -1.6 -2.6 -4.8 -6.7-10.6-14.9-23.4-28.2-34.9 -36 -36 -36 -36 -36 -36 -36 -33-27.7-16.8-11.8 -7.4 -4.5 -2.1 -0.7 0.4 0.7 1.2 1.5 

0.8 0.4 -0.5 -1.6 -2.6 -4.6 -6.3 -10-14.8-21.4-25.8-32.5 -36 -36 -36 -36 -36 -36 -36-31.1-25.6-15.8-11.7 -7.3 -4.8 -2.4 -0.8 -0.5 0.4 1.1 1.2 

0.7 0.4 -0.5 -1.6 -2.5 -4.3 -5.9 -8.9 -13-18.8-21.9-27.7 -33 -36 -36 -36 -36 -36 -34 -31-22.6-14.5 -11 -6.9 -4.6 -2.4 -0.9 -0.5 0.4 0.9 1.1 

0.7 0.4 -0.5 -1.4 -2.2 -3.8 -5.3 -7.9-11.4-15.6-18.6-23.1-28.2-31.8-34.9-33.6-34.3 -32-29.4-27.8-19.3-12.7 -9.6 -6.2 -4.2 -2.2 -0.9 -0.5 0.4 0.8 0.9 

0.7 0.4 -0.5 -1.1 -1.9 -3.2 -4.5 -6.5 -9.4 -13-15.1-18.5-23.2 -25-27.7-26.7-28.1-25.7-21.9 -23-15.2-10.4 -8.2 -5.3 -3.8 -1.9 -0.8 -0.5 0.4 0.8 0.9 

0.7 0.4 -0.5 -0.8 -1.5 -2.5 -3.8 -5 -7.7 -9.7-12.1-14.4-17.8-18.2-21.3-20.9-20.6-20.3-17.3 -19-11.7 -8.6 -6.6 -4.3 -3.1 -1.6 -0.7 -0.4 0.4 0.8 0.9 

0.8 0.5 0.4 -0.5 -1.1 -1.9 -2.9 -3.9 -5.7 -7 -8.9-10.6 -13-13.7-14.8-15.4-14.7-13.8-13.5-14.5 -9.3 -6.2 -5 -3.4 -2.6 -1.2 -0.7 0.4 0.4 0.8 0.9 

0.8 0.7 0.4 -0.5 -0.7 -1.4 -2.1 -2.9 -4.5 -5.7 -6.7 -8.2 -9.4 -10-11.4-10.7-11.1-10.3 -10-10.1 -6.7 -4.5 -3.9 -2.6 -1.6 -0.9 -0.5 0.4 0.4 0.8 0.9 

0.9 0.7 0.4 0.4 -0.5 -0.9 -1.6 -2.2 -3.3 -4.2 -4.9 -5.9 -7.2 -7.3 -8.2 -7.9 -8 -7.4 -7.4 -8.3 -5.2 -3.6 -2.8 -1.9 -1.2 -0.7 -0.4 0.5 0.5 0.8 0.9 

1 0.8 0.5 0.4 -0.5 -0.5 -0.9 -1.4 -2.2 -3.1 -3.5 -3.9 -4.8 -5.2 -5.6 -5.5 -5.6 -5.2 -5 -6.5 -3.5 -2.4 -1.8 -1.1 -0.8 -0.5 0.4 0.5 0.6 0.8 0.9 

1.1 0.9 0.8 0.5 0.4 -0.4 -0.7 -0.8 -1.4 -1.8 -2.4 -2.6 -3.2 -3.3 -3.9 -3.6 -3.8 -3.6 -3.3 -4.2 -2.4 -1.6 -1.2 -0.7 -0.5 0.4 0.4 0.8 0.7 0.9 0.9 

1.2 1.1 0.9 0.8 0.4 0.4 -0.5 -0.5 -0.8 -1.1 -1.5 -1.6 -2.2 -2.1 -2.6 -2.5 -2.6 -2.5 -2.4 -2.9 -1.5 -0.9 -0.7 -0.5 -0.4 0.4 0.5 0.8 0.8 0.9 1.1 

1.2 1.1 0.9 0.9 0.5 0.5 0.4 0.4 -0.5 -0.9 -0.8 -0.9 -1.2 -1.2 -1.5 -1.5 -1.6 -1.5 -1.2 -1.9 -0.8 -0.5 -0.5 0.4 0.4 0.5 0.7 0.8 0.9 0.9 1.1 

1.2 1.2 1.1  1 0.8 0.7 0.5 0.4 0.4 -0.4 -0.5 -0.5 -0.7 -0.7 -0.8 -0.8 -0.9 -0.8 -0.7 -0.7 -0.5 -0.4 0.4 0.4 0.5 0.7 0.8 0.8 0.9 1.1 1.1 

Training Set 1: 105mm HEAT 
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3.5 4.1 4.7 5.5 6.6 7.7 9 10.8 12.7 15.5 18.1 21 23.6 25.8 27.1 26.8 25.7 23.7 21.3 18.3 15.9 13 11.7 9.6  8  7 5.9 4.8 4.3 3.8 3.3 

3.6 4.2 4.9 5.6 6.9  8 9.6 11.7 13.9 16.9 20 23.6 26.8 29.2 30.8 31.1 29.8 27.5 24.6 20.9 17.8 14.7 12.8 10.4 8.7 7.3 6.2 5.3 4.5 3.9 3.5 

3.8 4.3 5 5.9 7.1 8.4 10 12.3 14.7 17.8 21.4 25.4 28.9 31.8 33 33.6 32 30.4 26.8 23 19.3 15.9 13.7 11.1 9.1 7.9 6.6 5.6 4.8 4.2 3.6 

3.8 4.3 5 5.8 7 8.4 10 12.3 14.5 17.8 21.3 25.3 29.2 31.8 33.6 33.9 33 30.9 27.9 23.7 20 16.6 14.2 11.5 9.4 7.9 6.7 5.7 4.9 4.3 3.8 

3.8 4.3 4.9 5.7 6.9 8.2 9.6 11.7 13.8 16.9 19.7 23.4 26.8 29.2 31.3 31.9 32.2 29.4 27.1 23 19.7 16.5 14.1 11.5 9.6  8 6.7 5.7 4.9 4.3 3.8 

3.6 4.2 4.8 5.5 6.6 7.6 8.9 10.6 12.4 14.4 16.8 18.9 21.6 22.9 25.5 25.8 27.4 25.3 24.4 21.3 18.6 15.8 13.7 11.3 9.4 7.9 6.7 5.7 4.9 4.3 3.8 

3.5 4.1 4.5 5 5.9 6.7 7.9 8.9 10.1 11 12.3 11.8 14.1 12.4 15.1 15.1 17.8 17.8 19.2 17.5 16.6 14.4 12.5 10.6  9 7.6 6.6 5.6 4.8 4.3 3.8 

3.3 3.8 4.2 4.6 5.2 5.6 6.3 6.6 6.9 6.6  6 3.5 3.3 -0.8 2.1 0.7 6.5 8.6 13.4 12.4 13.4 11.8 11.3 9.4 8.3 7.2 6.2 5.5 4.8 4.2 3.8 

3.2 3.5 3.8 4.1 4.3 4.5 4.6  4 3.2 1.2-0.8-6.2-8.4-15.2-13.2-15.2-5.6-1.8 4.9 6.7 9.4 8.9 9.1 8.2 7.4 6.6 5.7 5.1 4.5 4.1 3.6 

3.1 3.2 3.3 3.3 3.5 3.3 2.9 1.5-0.4-3.6-7.9-15.2-21.3-28.8-28.7-27.5-20.2-12.4-3.9 0.8 4.6 5.2 7 6.6 6.5 5.7 5.3 4.7 4.3 3.9 3.5 

2.8 2.9 2.9 2.8 2.6 2.1 1.1 -0.9 -3.1 -8.7-13.8-24.3-31.6 -36 -36 -36-31.1 -25-12.5 -5 0.5 2.5 4.6 5 5.3  5 4.9 4.5 4.1 3.8 3.3 

2.6 2.6 2.5 2.4 1.8 0.9 -0.5-2.9 -6-12.4-19.6-30.9 -36 -36 -36 -36 -36-32.9 -21 -11 -3.9-0.5 2.2 3.3 4.2 4.3 4.3 4.1 3.8 3.5 3.2 

2.4 2.4 2.2 1.9 1.2 0.4 -1.4-4.2-8.3-14.9-23.4-33.9 -36 -36 -36 -36 -36 -36-27.4-16.1 -7.6-3.1 0.4 2.1 3.3 3.6 3.8 3.6 3.5 3.3 3.2 

2.2 2.2 2 1.5 0.8 -0.5 -2.3 -5.3 -9.8-16.8-25.7-35.6 -36 -36 -36 -36 -36 -36-30.5-19.3-10.1 -5 -1.2 0.8 2.4 2.9 3.3 3.3 3.2 3.1 2.9 

2.1 2.1 1.7 1.2 0.5 -0.7 -2.6-5.7 -10-16.9-25.5-35.5 -36 -36 -36 -36 -36 -36 -32-20.7-11.4-6.3-2.2 0.4 1.6 2.4 2.8 2.9 3.1 2.9 2.8 

2.1 1.9 1.6 1.2 0.4 -0.7 -2.5-5.2 -9-15.2-22.9-32.6 -36 -36 -36 -36 -36 -36-30.8-19.6-11.4-6.3-2.6-0.5 1.2 2.1 2.5 2.8 2.8 2.8 2.6 

2 1.8 1.5 1.2 0.4 -0.6 -2.2-4.6-7.8-12.4-19.6-27.5-35.2 -36 -36 -36 -36-33.9-27.2-16.5-9.6-5.5-2.4-0.5 1.1 1.9 2.4 2.6 2.6 2.6 2.6 

1.9 1.8 1.5 1.2 0.5 -0.5 -1.6-3.5 -6-9.3-14.6-20.6-27.7-31.9-33.9 -35-29.3 -24-19.9-11.8-7.2-3.9-1.6 0.4 1.2 1.9 2.3 2.4 2.5 2.5 2.5 

1.9 1.8 1.6 1.3 0.8 0.4 -0.8 -2.1 -3.8 -5.6 -9-12.7-19.3-18.8 -22-21.3 -19-16.4-13.5 -7.9 -4.9 -2.5 -0.8 0.5 1.3 1.9 2.2 2.4 2.4 2.4 2.4 

1.8 1.7 1.6 1.4 0.9 0.5 -0.5 -1.1 -2.2 -3.7 -5.6 -7.7-10.7-10.7-12.7-11.7-10.7 -7.9 -6.9 -4.1 -2.6 -0.8 0.4 0.9 1.5 1.9 2.2 2.2 2.4 2.4 2.2 

1.8 1.6 1.6 1.4 1.1 0.7 0.4 -0.7 -1.2 -2.1 -3.3 -4.3 -5.9 -6 -6.6 -5.9 -5.3 -4.1 -3.2 -1.2 -0.7 0.4 0.8 1.3 1.6 1.9 2.1 2.2 2.2 2.2 2.2 

1.7 1.6 1.5 1.4 1.1 0.8 0.4 -0.5 -0.9 -1.6 -2.6 -3.8 -4.6 -5.9 -5.9 -6.2 -4.5 -3.2 -1.8 -0.9 -0.4 0.4 0.9 1.4 1.6 1.9 2.1 2.1 2.1 2.1 2.1 

1.6 1.6 1.5 1.2 0.9 0.7 0.4 -0.5 -1.1 -2.2 -3.3 -5.3 -6.6 -9 -9.4-10.1 -7.3 -5.5 -3.2 -1.9 -0.5 0.4 0.7 1.1 1.5 1.6 1.9 1.9 2.1 2.1 2.1 

1.6 1.5 1.4 1.1 0.8 0.4 -0.5-0.9-1.9-3.6-5.5 -9-10.3-14.5 -16-17.5-13.2-10.1-6.9-4.5-2.1 -1-0.4 0.5 1.1 1.4 1.6 1.8 1.9 1.9 1.9 

1.5 1.4 1.2 0.9 0.5 0.4 -0.7 -1.6 -3.1 -5.1 -7.9-12.5-15.6-20.9-23.4 -25 -19-16.1-11.1 -7.2 -3.8 -2.5 -0.8 -0.4 0.7 1.1 1.5 1.6 1.6 1.8 1.8 

1.5 1.3 1.1 0.8 0.4 -0.5 -1.1-2.4-4.2-6.7-10.3-15.8-20.6-26.5-30.2-30.6 -26-21.3-15.5-10.7-6.2-3.9-1.8-0.7 0.4 0.7 1.2 1.4 1.5 1.6 1.6 

1.4 1.2 0.9 0.7 0.4 -0.7 -1.6-3.2-5.3-8.3-12.5-18.9-24.6-31.2-34.2-34.7-31.6-26.4-19.5-13.5-8.3-5.6 -3-1.4-0.5 0.4 0.9 1.1 1.4 1.5 1.6 

1.2 1.1 0.8 0.4 -0.5 -0.9 -2.2-3.8-6.2-9.4-13.9-20.7-27.5-33.2 -36 -36-34.3-29.6 -22-15.6-9.8-6.7-3.8-1.9-0.8-0.4 0.7 0.9 1.2 1.4 1.5 

1.2 0.9 0.8 0.4 -0.5 -1.1 -2.4 -3.9 -6.6 -9.7-14.4-21.2-27.9-33.2 -36 -36 -35-30.8-23.7-16.8 -11 -7.6 -4.5 -2.5 -1.1 -0.5 0.4 0.8 1.1 1.2 1.5 

1.1 0.9 0.7 0.4 -0.5 -1.2 -2.6-4.1-6.6-9.7-14.1-20.5-26.8-31.8 -35-35.2-33.6-29.2-22.4-16.1 -11-7.6-4.6-2.6-1.3-0.5 0.4 0.7 0.9 1.2 1.4 

1.1 0.9 0.5 0.4 -0.5 -1.2 -2.6-3.9-6.2 -9-13.1-18.2-24.3-28.4-31.8-31.9-30.8 -26-20.5-14.8-10.1 -7-4.5-2.6-1.4-0.5 0.4 0.6 0.9 1.1 1.4 

1.1 0.9 0.5 0.4 -0.5 -1.1 -2.2-3.5-5.5-7.9-11.1-15.2-20.3-23.1-26.4-26.8-25.8-21.7-17.8 -13 -9-6.6-4.2-2.4-1.3-0.5 0.4 0.5 0.9 1.1 1.2 

1.1 0.9 0.6 0.4 -0.5 -0.9 -1.9 -3-4.7-6.6-9.3-12.1-15.9-17.5-21.2-20.2-19.9-17.5-14.2-10.4-7.7-5.5-3.6-2.1-1.1-0.5 0.4 0.5 0.9 1.1 1.2 

1.1 0.9 0.7 0.4 -0.5 -0.7 -1.5-2.4-3.9 -5-7.2-9.4-12.4-13.2-15.5-14.7-14.4-12.7-10.7 -8 -6-4.3-2.8-1.6-0.8-0.5 0.4 0.5 0.9 1.1 1.2 

1.1 0.9 0.7 0.4 0.4 -0.5 -1.1 -1.8 -2.8 -3.9 -5.3 -7 -8.4 -9.4-10.3-10.4 -10 -9 -7.7 -6 -4.8 -3.3 -2.1 -1.2 -0.7 -0.5 0.4 0.7 0.9 1.1 1.2 

Training Set 2: 3-5in Rocket 

100 



1.5 1.6   1.8 2  2.2  2.4  2.6  2.8  3.1   3.3  3.5   3.8  3.9  3.9  3.9  3.8  3.6  3.5   3.3    3   2.4  2.6  2.4  2.4   1.9   1.9   1.4   1.4   1.1   1.2   1.2 

1.6 1.8   1.9 2.1 2.4   2.6   2.9   3.3   3.6   3.9   4.2   4.5   4.6   4.6   4.6   4.6   4.3   4.2   3.9   3.6   2.8   2.9   2.6   2.4   2.2     2   1.5   1.5   1.2   1.4   1.2 

1.8 1.9  2.1 2.4 2.6  3.1   3.3  3.8  4.2  4.5  4.5   5.5   5.6  5.7   5.7  5.6   5.3    5  4.5  4.2  3.5  3.3   3.1   2.6  2.4  2.1   1.6   1.6   1.5   1.5   1.4 

1.9 2.1   2.2 2.6 2.9   3.3   3.8   4.3   4.9   5.5   5.9   6.5   6.7     7   6.9   6.7   6.5     6   5.3   4.9   4.1   3.9   3.3   2.9   2.6   2.4   1.9   1.8   1.6   1.5   1.4 

1.9 2.2   2.5 2.8 3.3   3.7   4.2   4.9   5.6   6.3   7.2   7.7   8.3   8.4   8.4   8.2   7.6   7.3   6.5   5.7   4.9   4.3   3.8   3.3   2.9   2.6   2.2   1.9   1.8   1.5   1.5 

2.1 2.2   2.6 3.1 3.5   4.1   4.6   5.5   6.5   7.4   8.4   9.6    10 10.7 10.1  10.1   9.3   8.9   7.4   6.7   5.6   4.9   4.2   3.6   3.2   2.6   2.4   2.1    1.8   1.5   1.5 

2.1 2.4   2.7 3.2 3.8  4.3   5.2  6.2  7.3   8.4  9.6 11.1  11.8 12.7 12.4 12.3    11  10.1   8.6  7.7  6.3   5.6  4.6  3.9  3.3   2.9   2.4  2.1   1.9   1.6   1.6 

2.1 2.4   2.8 3.3 3.9   4.6   5.5   6.7     8   9.7 11.3 12.8 14.1  14.8 14.5 14.5    13 11.8   9.8   8.6   7.2     6     5   4.2   3.5   3.1   2.5   2.2   1.9   1.6   1.6 

2.1 2.4   2.8 3.3 3.9  4.8   5.7    7   8.4 10.3 12.4 14.3 15.8    17 16.6 16.6 14.9 13.2    11   9.4   7.7   6.6  5.3   4.3   3.6  3.2  2.6  2.2   2.1   1.8   1.6 

2.1 2.4  2.8 3.3 3.9  4.6   5.6    7  8.7 10.6 12.7 14.9 16.9 18.2 18.5 17.9 16.2 14.1  11.8  9.8    8  6.7   5.5  4.5   3.8   3.2  2.6  2.4   2.1   1.8   1.6 

2.1 2.2  2.6 3.1 3.8  4.3   5.3  6.6   8.2  9.8 11.7 13.9 16.2 17.5 18.6 17.9 16.4 14.1  12.1   9.8  8.2  6.7   5.5  4.5  3.8   3.2  2.6   2.2  2.1   1.8   1.6 

1.9 2.1   2.4 2.8 3.3   3.9  4.6  5.6  6.7   8.2  9.4 11.3 13.2 14.4 16.5 15.5 14.8    13 11.1   9.6  7.6  6.5   5.2  4.3   3.6  3.2  2.6  2.2   2.1   1.8   1.6 

1.8 1.9   2.2 2.4 2.8  3.1   3.8  4.1     5     5   5.5   6.2    7  7.9 11.3 10.7 11.4  9.8  9.8    8   6.9   5.7  4.8  3.9  3.3    3   2.5  2.2   1.9   1.8   1.6 

1.6 1.6   1.8 1.8 2.2  2.1   2.4  2.2   1.8   1.2   0.4 -1.1    -1 -1.2   1.9  2.9    5   5.2  6.2  5.7   5.2  4.8  3.9  3.3    3   2.6  2.2  2.1   1.8   1.6   1.5 

1.4 1.4   1.4 1.2 1.2   0.7   0.7-0.5-1.6-3.9-6.2-11.1   -11-12.3-9.7-6.5-3.6-0.5   2.5     3   3.5   3.2   3.1   2.8   2.6   2.4   2.1   1.8   1.6   1.6   1.5 

1.1 1.1   0.9 0.8 0.4  0.4-0.9-2.2   -5-8.3   -12  -19-20.6-23.6-19.2-16.9-10.7-5.5-1.9-0.5   1.2   1.8  2.1   2.1   2.1   1.9   1.8   1.6   1.6   1.5   1.5 

0.9 0.8  0.5 0.4-0.5-1.2-2.6-4.3-7.5-11.7-16.7-22.9-27.8-29.5-26.8-24.8-16.5-10.6-5.7-3.1-0.7  0.4   1.1   1.4   1.5   1.5   1.6   1.5   1.5   1.4   1.4 

0.8 0.5   0.4-0.5-0.9-2.1-3.5    -6-9.4-13.9-19.9-26.4-31.6-33.3-31.3-28.7-20.7-14.4-8.6-5.5-2.4    -1   0.4   0.7   1.1   1.1   1.4   1.3   1.4   1.2   1.2 

0.7 0.4   0.4-0.5-1.3-2.4-4.1-6.2   -10-14.8-20.1-26.5-32.2-33.9-33.3-30.5-23.7-17.2-11.3-7.6-3.9-2.4-0.7   0.4   0.5   0.8   1.1    1.1   1.2   1.1   1.2 

0.5 0.4 -0.5 -0.7 -1.5 -2.6 -4.5 -6.7-10.4-14.5-20.2-25.4-31.6-32.9-32.6-29.6-23.7-17.9-12.1 -8.3 -4.8 -3.1 -1.2 -0.5   0.4   0.5   0.8   0.9   1.1   1.1   1.1 

0.4 0.4 -0.5 -0.8 -1.6 -2.8 -4.5 -6.6   -10-13.4-18.6   -23-28.8-29.5-30.4-26.8-22.2-16.9-12.3 -8.4 -5.2 -3.3 -1.6 -0.7 -0.5   0.4   0.7   0.8   0.9   0.9   1.1 

0.4 0.4-0.5-0.8-1.6-2.6-4.2    -6    -9-11.7-16.2   -19-24.6-24.6-25.5-22.4   -19-15.2-11.3-8.2-5.2-3.3-1.8-0.9-0.5   0.4   0.5   0.7   0.9   0.9     1 

0.4 0.4 -0.5 -0.8 -1.5 -2.4 -3.8 -5.3 -7.7 -9.8-13.2-15.8   -19-19.6-20.6-18.1-16.2-12.5 -9.7 -7.2 -4.8 -3.2 -1.8 -0.9 -0.5   0.4   0.4   0.7   0.8   0.9   0.9 

0.4 0.4 -0.5 -0.7 -1.2 -2.1 -3.1 -4.3 -6.2 -7.9-10.7-11.8-13.2-14.8-16.6-14.1   -13 -9.7   -8 -6.2 -4.2 -2.9 -1.6 -0.9 -0.5   0.4  0.4   0.7  0.8  0.8  0.9 

0.4 0.4 -0.5 -0.7 -1.1 -1.6 -2.6 -3.5    -5 -6.1 -8.3 -9.1-11.4-11.1-12.3-10.6   -10 -7.6 -6.2 -4.8 -3.3 -2.4 -1.4 -0.7 -0.5   0.4   0.4   0.7   0.8   0.8   0.9 

0.4 0.4 -0.4 -0.5 -0.8 -1.2 -2.1 -2.8   -4 -4.8 -6.2 -6.9 -8.3 -8.3 -8.9 -7.6 -7.3 -5.7 -4.9 -3.8 -2.6 -1.8 -0.9 -0.7 -0.5   0.4   0.4  0.7   0.8  0.8  0.9 

0.5 0.4   0.4 -0.5 -0.7 -0.9 -1.5 -2.1 -2.9 -3.5 -4.5 -4.8 -5.6 -5.7 -6.3 -5.3 -5.3 -4.1 -3.8 -2.9 -1.9 -1.4 -0.8 -0.5 -0.4   0.4   0.5   0.7   0.7   0.8   0.9 

0.5 0.4   0.4 -0.4 -0.5 -0.7 -0.9 -1.4 -2.1 -2.5 -3.2 -3.3 -4.1 -3.9 -4.6 -3.6 -3.3 -2.7 -2.5 -1.9 -1.5 -0.9 -0.7 -0.5   0.4   0.4   0.5   0.7   0.8   0.8   0.9 

0.6 0.5   0.4 0.4 -0.5 -0.5 -0.7 -0.9 -1.3 -1.6 -2.1 -2.2 -2.6 -2.6 -3.1 -2.4 -2.4 -1.9 -1.8 -1.2 -0.8 -0.7 -0.5 -0.4   0.4   0.4   0.5   0.7   0.7   0.8   0.9 

0.7 0.5   0.4 0.4 0.4 -0.5 -0.5 -0.7 -0.8 -1.1 -1.4 -1.5 -1.8 -1.8 -2.1 -1.6 -1.5 -1.2    -1 -0.8 -0.7 -0.5 -0.4   0.4   0.4   0.4   0.5   0.8   0.7   0.8   0.9 

0.8 0.6   0.5 0.4 0.4   0.4 -0.5 -0.5 -0.5 -0.7 -0.8 -0.8 -0.9 -0.9 -1.2 -0.9 -0.9 -0.7 -0.7 -0.5 -0.5 -0.4   0.4   0.4   0.4   0.5   0.7   0.8   0.7   0.9   0.9 

0.8 0.7   0.5 0.5 0.4   0.4   0.4   0.4 -0.5 -0.5 -0.7 -0.5 -0.6 -0.7 -0.7 -0.7 -0.7 -0.5 -0.5 -0.5 -0.5   0.4   0.4   0.4   0.4   0.7   0.7   0.8   0.7   0.9   0.9 

0.8 0.8   0.7 0.5 0.5   0.4   0.4   0.4   0.4   0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.7   0.7   0.8   0.7   0.9   0.8 

0.8 0.8   0.5 0.7 0.5   0.5   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.5   0.5   0.4   0.4   0.8   0.8   0.9   0.7   0.9   0.9 

0.8 0.8   0.5 0.8 0.7   0.7   0.5   0.5   0.5   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.5   0.4   0.6   0.5   0.4   0.4   0.8   0.8   0.9   0.8   0.9   0.9 

Training Set 2: 60mm Mortar 

101 



i.l 3.3 3.8 4.2 

3.3 3.6 4.2 4.6 

3.5 3.9 4.5 5 

3.8 4.2 4.9 5.6 

3.9 4.5 5.2 6 

4.1 4.6 5.5 6.2 

4.2 4.8 5.6 6.6 

4.2 4.8 5.6 6.6 

4.2 4.8 5.6 6.5 

4.1 4.6 5.5 6.2 

3.9 4.3 5 5.6 

3.6 3.9 4.5 5 

3.3 3.6 3.9 4.3 

3 3.2 3.3 3.5 

2.6 2.6 2.6 2.5 

2.2 2.1 1.9 1.6 

1.8 1.6 1.5 0.8 

1.5 1.2 0.9 0.4 

1.2 0.9 0.5 -0.5 

1.1 0.7 0.4 -0.7 

0.9 0.5 -0.5 -0.9 

0.8 0.4 -0.5 -0.9 

0.7 0.4 -0.5 -0.9 

0.7 0.4 -0.5 -0.9 

0.7 0.4 -0.5 -0.8 

0.8 0.4 -0.5 -0.7 

0.8 0.5 0.4 -0.5 

0.8 0.7 0.4 -0.4 

0.9 0.8 0.4 0.4 

0.9 0.8 0.5 0.4 

0.9 0.9 0.5 0.5 

1.1 0.9 0.7 0.8 

1.1 0.9 0.8 0.8 

1.1 1.1 0.9 0.9 

1.2 1.1 1.1 1.1 

4.8 5.5  6 6.7 7.4 8.3  9 9.3 9.8 10 9.6 9.4 8.7 8.2 7.7 6.7 6.3 5.7 5.2 4.6 4.2 3.8 3.3 3.1 2.6 2.4 2.2 

5.5 6.2 6.9 8.2  9 10 11 11.7 12.1 12.1 11.7 11.4 10.6 10  9  8 7.3 6.6 5.9 5.2 4.6 4.1 3.6 3.3 2.9 2.5 2.4 

6 7.2 8.2 9.4 10.6 12.3 13.4 14.4 15.2 15.2 14.7 13.9 12.5 11.7 10.6 9.6 8.4 7.4 6.7 5.7 5.2 4.5 3.9 3.5 3.1 2.6 2.5 

6.6 7.9 8.9 10.8 12 14.4 15.8 17.3 18.2 18.1 17.5 16.5 15.1 13.9 12.4 11.1 9.6 8.6 7.4 6.5 5.6 4.9 4.3 3.8 3.3 2.8 2.6 

7.2 8.6 10 12.3 13.8 16.8 18.9 20.7 21.9 21.9 20.6 19.6 17.8 16.1 14.4 12.8 10.8 9.8 8.3 7.2 6.2 5.2 4.6 3.9 3.5 3.1 2.6 

7.7 9.1 10.7 13.4 15.2 18.8 21.9 24.3 25.5 25.5 24.6 22.7 20.3 18.3 16.5 14.5 12.3 10.8 9.1 7.9 6.7 5.6 4.9 4.2 3.6 3.3 2.8 

8 9.7 11.7 14.5 17 20.5 24 26.8 28.7 29.9 27.9 26.3 23.1 21 18.3 16.4 13.5 11.8 10 8.4 7.2 5.9  5 4.3 3.8 3.3 2.9 

8.2 9.8 11.8 14.7 17.5 21.2 25 27.9 30.4 30.9 30.1 28.7 25.7 23.3 20.5 17.8 14.7 12.7 10.6 8.9 7.4 6.2 5.3 4.5 3.9 3.3 3.1 

8 9.6 11.7 14.4 16.9 20.3 24.1 27 29.2 30.1 30.1 28.5 27.1 24.4 21.4 18.5 15.4 13 10.8  9 7.6 6.3 5.3 4.5 3.9 3.5 3.1 

7.6 8.9 11 13.1 15.6 18.2 20.7 22.6 24.8 24.3 26 23.8 25 23.1 20.9 17.9 15.2 12.7 10.8 8.7 7.6 6.2 5.3 4.5 3.9 3.5 3.1 

6.7 7.9 9.6 11.1 12.5 13.9 15.5 14.5 14.7 13.4 17.8 15.2 20.2 18.6 18.5 16.2 14.5 12.1 10.4 8.4 7.3  6 5.2 4.3 3.9 3.3 3.1 

5.9 6.7 7.7 8.4 9.1 9.1 6.5 6.6 3.5 1.2 3.6 3.3 11.3 10.7 13.9 13.4 12.5 10.6 9.4 7.9 6.9 5.6 4.9 4.2 3.8 3.3 2.9 

5 5.2 5.6 5.5  5 2.8 -0.9 -4.3 -8.4-14.5-11.3 -9.6 -1.6 1.9 8.2  9 9.8 8.4  8 6.7 6.2 5.2 4.6 3.9 3.6 3.2 2.8 

3.8 3.3 3.3 0.9 0.4-3.3-9.3-15.6-23.3-30.1-30.9-25.8-12.4 -7 1.8 3.8 5.6 5.7 6 5.2 5 4.3 4.1 3.6 3.3 3 2.6 

2.4 1.6 1.1 -1.5-3.9-9.8-17.5-25.8-32.5 -36 -36 -36-24.8-18.3-6.7-2.6 1.2 2.9 3.8 3.8 4.1 3.6 3.5 3.2 3.1 2.9 2.5 

1.1 0.4-0.9-4.9 -8-15.2-23.4-32.5 -36 -36 -36 -36 -36-26.4-14.2-8.4-2.4 0.4 1.6 2.2 2.8 2.8 3.1 2.8 2.6 2.5 2.4 

-0.5 -1.2 -3.2 -6.7 -12-19.3-28.7-35.9 -36 -36 -36 -36 -36-32.9-21.3-13.4 -6.3 -2.6 -0.7 0.8 1.6 2.1 2.4 2.4 2.4 2.2 2.2 

-0.9-2.4 -5-9.3-14.8-23.6-32.3 -36 -36 -36 -36 -36 -36-35.6-25.7-17.5-9.1 -5-2.1-0.5 0.8 1.4 1.9 1.9 2.1 2.1 2.1 

-1.4 -3.2 -6 -10-15.8 -24-33.2 -36 -36 -36 -36 -36 -36 -36-29.8-20.9 -12 -7.2 -3.9 -1.6 -0.5 0.6 1.4 1.5 1.6 1.8 1.9 

-2-3.8-6.6-10.8-16.3-24.7-33.5 -36 -36 -36 -36 -36 -36 -36-30.6-22.3 -13-8.4-4.8-2.5-0.7 0.4 0.9 1.1 1.5 1.6 1.6 

-2.2 -4.1 -6.6-10.8-16.1-23.6-32.3 -36 -36 -36 -36 -36 -36 -36 -30 -22-13.8 -8.9 -5.5 -2.9 -1.2 -0.5 0.5 0.9 1.2 1.4 1.6 

-2.2 -4-6.5-10.1-15.1-21.3-19.2 -35 -36 -36 -36 -36 -36-34.9-28.1-20.7-13.2-8.9-5.6-3.2-1.5-0.6 0.4 0.8 1.1 1.2 1.5 

-2.1 -3.8 -5.9 -9.1-13.4-18.5 -25-30.9 -36 -36 -36 -36 -36-31.1 -24-18.3-12.1 -8.2 -5.5 -3.2 -1.6 -0.7 0.4 0.6 0.9 1.2 1.4 

-1.9-3.2 -5-7.9-11.3-15.2-20.2-24.7-30.9 -35-35.4-32.6-31.3-24.7-19.6-15.5-10.6-7.3-4.9-2.8-1.6-0.7 0.4 0.5 0.9 1.1 1.2 

-1.6-2.8-4.3-6.6-9.3-12.4-16.2-19.3-24.3 -26-27.9-25.4-23.8-19.6-15.1-11.8-8.4 -6-4.2-2.4-1.4-0.5 0.4 0.5 0.8 1.1 1.2 

-1.2 -2.2 -3.5 -5.3 -7.3 -9.4-12.1-14.2-18.5-18.5-20.1-18.8-18.2-14.8 -12 -9.1 -6.7 -4.9 -3.3 -1.9 -1.1 -0.5 0.4 0.5 0.8 1.1 1.2 

-0.9 -1.6 -2.6 -4.1 -5.5 -7 -8.9-10.7 -13-13.2-14.2-13.5 -13-11.3 -8.9 -7.2 -5.2 -3.8 -2.6 -1.5 -0.8 -0.5 0.4 0.6 0.9 1.1 1.2 

-0.7 -1.2 -1.9 -2.9 -4.2 -5 -6.3 -7.4 -9 -9.3 -9.8 -9.3 -9.1 -7.7 -6.6 -5.2 -3.9 -2.6 -1.8 -1.1 -0.5 0.4 0.4 0.7 0.9 1.1 1.2 

-0.5 -0.7 -1.2 -1.9 -2.8 -3.8 -4.3 -4.9 -6.2 -6.5 -6.9 -6.6 -6.6 -5.5 -4.5 -3.8 -2.8 -1.8 -1.2 -0.7 -0.5 0.4 0.5 0.8 0.9 1.1 1.2 

0.4 -0.5 -0.7 -1.2 -1.9 -2.4 -2.9 -3.5 -4.2 -4.3 -4.6 -4.2 -4.3 -3.8 -2.9 -2.5 -1.6 -1.1 -0.7 -0.5 0.4 0.4 0.7 0.8 0.9 1.1 1.2 

0.4 0.4 -0.5 -0.7 -1.1 -1.5 -1.9 -2.2 -2.6 -2.6 -2.9 -2.8 -2.6 -2.2 -1.8 -1.6 -0.9 -0.7 -0.5 0.4 0.4 0.5 0.8 0.9 1.1 1.1 1.2 

0.5 0.4 0.4 -0.5 -0.7 -0.8 -1.1 -1.2 -1.6 -1.6 -1.8 -1.5 -1.6 -1.2 -1.1 -0.8 -0.5 -0.5 0.4 0.4 0.5 0.7 0.9 0.9 1.1 1.1 1.2 

0.7 0.5 0.4 0.4 -0.5 -0.5 -0.7 -0.7 -0.8 -0.8 -0.9 -0.8 -0.8 -0.7 -0.7 -0.5 -0.4 0.4 0.4 0.5 0.7 0.8 0.9 1.1 1.1 1.2 1.2 

0.8 0.7 0.5 0.4 0.4 0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.4 0.4 0.5 0.5 0.8 0.8 0.9 1.1 1.1 1.2 1.2 1.2 

0.9 0.8 0.8 0.7 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.7 0.8 0.9 0.9 1.1 1.1 1.1 1.2 1.2 1.2 

Training Set 2: 81 mm Mortar 
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[2.5 2.6 2.8   2.8   2.9   3.1   3.1   3.2   3.2   3.1   3.2   3.2   3.2   3.3   3.5   3.5   3.5   3.6   3.6   3.6   3.6   3.5   3.3   3.3   3.2   3.1   2.8   2.6   2.5   2.4   2.2 

2.6 2.8 2.9  3.1   3.2  3.2  3.2  3.3  3.3  3.2  3.3   3.2  3.3   3.3  3.5   3.6  3.8  3.9  3.9  3.9  3.9  3.9   3.8  3.5  3.5  3.3   3.2   2.9  2.6  2.6  2.4 

2.9 3.1 3.2  3.3   3.3   3.3   3.3   3.3   3.3  3.2  3.2  3.2  3.2  3.3   3.5   3.8  3.9  4.1   4.3  4.2  4.3  4.2  4.1   3.9  3.8  3.5   3.3   3.2  2.9  2.6  2.5 

3.1 3.2 3.3  3.5   3.6   3.6  3.5   3.5   3.3  3.2  3.2  2.9  3.1   3.1   3.5  3.6  3.9  4.3  4.6  4.6  4.6  4.6  4.3  4.3  4.1   3.9  3.5   3.3   3.1   2.9  2.6 

3.3 3.5 3.5   3.8  3.8  3.8  3.8  3.6  3.3   3.1   2.6  2.4  2.4  2.4  2.9  3.3  3.8  4.3  4.8  4.9    5  4.9  4.9  4.6  4.5  4.2  3.9   3.8  3.3   3.2  2.8 

3.5 3.8 3.9   4.1   4.1   4.1   3.9   3.6   3.2   2.6   2.1   1.5   1.4   1.2   1.9   2.6   3.3   4.3   4.9   5.3   5.5   5.5   5.3     5   4.9   4.6   4.3   3.9   3.6   3.3   3.1 

3.8 3.9 4.2  4.3  4.3   4.3   4.2  3.6  3.1   2.1   1.1   0.4 -0.5 -0.7  0.4   1.4  2.6  4.1     5   5.6   5.9    6   5.9   5.6   5.3    5   4.6  4.3   3.9  3.6  3.3 

4.1 4.3 4.5   4.6   4.8   4.6   4.3   3.8   2.8   1.5   0.4 -1.4 -2.4 -2.9 -1.2 -0.8   1.4   3.3   4.9   5.7   6.3   6.5   6.5   6.2   5.7   5.5   4.9   4.6   4.2   3.9   3.3 

4.3 4.6 4.9   5.2   5.2     5   4.6   3.9   2.8   1.9 -1.2 -3.6 -4.9 -6.2 -4.3 -3.2   0.4   2.5   4.8   5.9   6.7     7   6.9   6.7   6.3     6   5.5   4.9   4.5   4.2   3.8 

4.6 5 5.2   5.6   5.6   5.6     5   4.3   2.8   0.8 -2.4 -5.6 -7.7 -9.7 -8.4 -6.5 -2.1   1.2   4.3     6   7.2   7.6   7.6   7.4   6.9   6.6   5.7   5.5   4.8   4.3   3.9 

4.9 5.3 5.6    6  6.3   6.3   5.9    5   3.3  0.8 -2.9 -7.4 -10.3 -12.8 -12.7 -9.1 -5.2 -0.5   3.9  6.2  7.7   8.4  8.3    8  7.6    7  6.2   5.7    5  4.6  4.2 

5.3 5.7 6.2  6.6  6.9    7  6.7   5.9  4.1   1.5-3.2-8.2-12.4-15.8-16.2   -12-7.2-0.7   3.9  6.7  8.6    9    9  8.7   8.2   7.6  6.7    6   5.3   4.9  4.3 

5.5 6.2 6.5   7.2  7.6   7.9  7.7    7    5  2.5-2.8-8.3-14.1-18.3-18.1-14.4-8.7-0.9  4.2  7.4   5.4 10.1    10  9.4   8.7   8.2   7.2  6.3   5.6    5  4.5 

5.7 6.5 6.9  7.6  8.2   8.7  8.6  8.2  6.5   3.9 -1.5 -7.6-14.5-19.3-19.3-15.4 -8.7 -0.5   5.3   8.9 10.7 11.1  10.8 10.1   9.4   8.6  7.6  6.7   5.9   5.3   4.8 

6 6.7 7.2   7.9   8.7  9.4  9.4  9.3   8.3   6.2  0.4 -5.9-13.4-18.5-18.6-14.8 -7.6  0.8  6.9 10.3    12 12.3 11.7 10.8    10    9  7.9    7   6.2  5.6  4.9 

6.2 6.9 7.4  8.2    9  9.8    10    10  9.3    7   2.1 -3.6-11.7-17.3-17.1-13.2-5.7   2.4  8.4 11.4 13.1 13.1  12.4 11.4 10.4  9.3   8.2  7.2   6.3   5.7    5 

6.3 7 7.7   8.3   9.1   9.8    10 10.1   9.4  6.7  2.4 -3.9-11.3-17.9-17.6-12.7   -6  3.1   9.1  12.1  13.5 13.5 12.8 11.7 10.7  9.1   8.3   7.3   6.5   5.7   5.2 

6.3 7 7.7   8.3    9  9.6  9.6  9.6  8.6  4.9  0.5 -6.7-13.2-23.1   -22-17.6 -8.9  0.8   0.8 11.3    13 13.2 12.7 11.5 10.6  9.3   8.3   7.3   6.5   5.7   5.2 

6.3 6.9 7.6   8.2   8.9     9   8.9   7.7     7   1.6 -3.3-11.8-20.2-32.8   -32   -27-16.2 -4.1   4.1   8.7 11.3 12.3 11.8    11  10.1     9   8.2   7.2   6.5   5.7   5.2 

6.2 6.7 7.4   7.9   8.4   8.4   7.9   5.6   4.9-1.6-8.3-19.2-28.4   -36   -36-34.6   -27-10.7-0.7   4.9   8.7 10.1  10.6    10   9.4   8.4   7.7     7   6.2   5.6     5 

6 6.6 7.2   7.4   7.7   7.6   6.7   4.2   2.5    -5 -13.2 -25.8 -34.7   -36   -36   -36 -34.9 -20.3 -7.9   0.4   4.9   7.9   8.6   8.9   8.6   7.7   7.2   6.6     6   5.5     5 

5.9 6.3 6.9     7   7.2   6.9   5.9   3.2   0.7 -6.7-16.2-28.8   -36   -36   -36   -36   -36-29.2-15.4 -6.2   0.7   4.9   6.5     7   7.3   6.7   6.6   6.2   5.7   5.2   4.8 

5.6 6 6.6  6.6  6.7   6.3   5.5  2.6  0.4-6.7-16.6-28.4  -36  -36  -36  -36  -36-34.6-21.2-11.2-3.3   0.9   3.9  4.9   5.9  5.7    6  5.6   5.5  4.9  4.6 

5.5 5.7     6   6.2   6.2   5.9   4.9   2.2   0.4-5.6-14.2-23.6-35.7   -36   -36   -36   -36   -36-37.2-17.3-7.6-2.2   1.5   3.2   4.6   4.9   5.2     5   4.9   4.6   4.3 

5.2 5.5 5.7   5.6  5.6    5  4.3   1.6  0.4 -4.6-11.3-18.1-30.5  -36  -36  -36  -36  -36-30.6-20.5-10.7   -5 -0.7   1.5   3.3  4.1   4.6  4.5   4.5  4.3   4.2 

4.9 5 5.3   4.9   4.9   4.2   3.3   1.7-0.5-4.8-9.4-16.1-26.4   -36   -36   -36   -36   -36-33.3-24.8-13.5-7.9-2.5   0.4   2.1   3.3   3.9   4.1   4.2   3.9   3.9 

4.6 4.8 4.8   4.3   4.2   3.3   2.1 -1.1 -2.1 -7.6-12.5-20.5-28.4   -36   -36   -36   -36   -36-35.6-28.8-16.2 -9.8 -4.2 -0.9   1.1   2.5   3.2   3.6   3.8   3.6   3.6 

4.3 4.3 4.3 3.8 3.3 1.9 0.7 -3.5 -4.6-12.3-18.9 -30 -36 -36 -36 -36 -36 -36 -36-30.9-18.2-11.3 -5.6 -2.1 0.4 1.6 2.6 3.1 3.3 3.3 3.3 

3.3 3.9 3.8 3.1 2.6 1.9-0.9-5.9-7.4-18.9-28.1 -36 -36 -36 -36 -36 -36 -36 -36-31.5 -19-11.5-6.2-2.6-0.5 1.4 2.2 2.6 3.1 3.2 3.2 

3.6 3.6 3.3 2.6 1.6 1.4-1.9-7.6-10.7-21.4-32.6 -36 -36 -36 -36 -36 -36 -36 -36-30.2-18.5-11.1 -6.2-2.8-0.7 1.1 2.1 2.4 2.8 2.9 3.1 

3.3 3.3 2.9 2.2 1.1 -0.7 -2.9 -8 -12-22.3-33.3 -36 -36 -36 -36 -36 -36 -36-33.7-27.4-16.8 -10 -5.6 -2.6 -0.7 0.9 1.8 2.2 2.6 2.6 2.8 

3.2 3.1 2.6 1.9 1.9 -0.8 -2.8 -7.6-11.1-20.3-30.6 -36 -36 -36 -36 -36 -36 -36-28.4-22.7-14.5 -8.7 -4.5 -2.1 -0.5 0.9 1.6 2.1 2.5 2.6 2.6 

2.9 2.8 2.4   1.9   1.8-0.8-2.5-6.2-9.3-16.4   -25-30.8   -36   -36   -36   -36-35.7-31.9   -22-17.8-11.7-7.3-3.8-1.6-0.5   0.9   1.6   2.1   2.4   2.5   2.5 

2.8 2.6 2.2   1.8   1.1-0.5-1.8-4.5-6.9-12.3-17.3-22.6-26.8-29.4-30.6-30.8-29.8-22.3-16.6-13.2-8.3-5.5-2.8-1.1-0.5   1.1   1.6   1.9  2.2  2.7  2.4 

2.6 2.6 2.2   1.8   1.2-0.4-0.9-3.1-4.6-8.3-11.4-15.4-18.9-19.9-20.7  -20-17.6-15.4-11.4-9.4   -6-3.8-1.8-0.8  0.4   1.2   1.6   1.9  2.2  2.2  2.4 

Training Set 2: 105mm Artillery 
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16—4 4.3 4.8 5.2 5.7 6.2 6.9 7.4  8 8.4 8.7 8.7 9.3 9.1  9 8.7 8.3  8 7.7 7.2 6.7 6.2 5.7 5.2 4.8 3.9 3.9 3.5 3.2 3.1 

3.9 4.3 4.9 5.3 5.9 6.6 7.2  8 8.7 9.3 9.8 10.1 10.4 11.1 11 10.8 10 10 9.6 9.3 8.3 7.7 6.9 6.6 5.7 5.3 4.3 4.3 3.9 3.5 3.3 

4.3 4.8 5.3  6 6.7 7.3 8.3 9.3 10.1 11 11.4 12.1 12.4 13 12.8 12.8 11.8 12 11.1 10.7 9.4 8.9 7.9 7.7 6.5  6 4.9 4.8 4.2 3.9 3.5 

4.6 5.2 5.7 6.6 7.3 8.3 9.1 10.4 11.4 12.7 13.2 14.4 M.5 15.4 15 15.1 13.9 13.9 12.8 12.3 10.8 10.3  9 8.4 7.2 6.6 5.2 5.2 4.5 4.2 3.8 

4.9 5.5 6.3 7.2  8 9.1 10.3 11.7 13.4 14.2 15.5 16.5 17.3 18.1 17.8 17.5 16.8 16.6 14.8 14.1 12.5 11.8 10 9.4  8 7.2 5.6 5.6 4.9 4.3 3.9 

5.2 5.9 6.9 7.7 8.7 10.1 11.4 13.2 14.9 16.8 17.9 19.2 20 20.7 20.3 20.5 19.3 18.9 17.2 16.2 14.4 13.1 11.3 10.4 8.9 7.9 6.2 6 5.3 4.8 4.2 

5.5 6.2 7.3 8.3 9.4 11 12.8 14.7 16.6 18.6 20 21.7 22.4 23.4 23 22.7 22 21.6 19.6 18.1 16.1 14.7 12.5 11.4 9.6 8.6 6.6 6.5 5.6 4.9 4.3 

5.6 6.5 7.6 8.7 10 11.7 13.7 15.8 18.1 20.2 21.9 23.4 24.1 24.1 24.8 24.7 24.3 24 21.4 20.2 17.9 15.9 13.7 12.4 10.3 9.1 7 6.7 5.9 5.2 4.6 

5.9 6.7 7.9 8.9 10.4 12.1 14.1 16.5 18.6 20.9 22.6 23.6 24.3 23.8 24.7 24.3 24.8 24.8 23.3 21.4 19.2 17.2 14.7 13.2 11 9.7 7.4 7 6.2 5.5 4.8 

5.9 6.7 8 9 10.4 12.1 14.2 16.5 18.6 20.3 21.6 20.9 20.2 17 18.3 20.7 22.9 23.3 23.6 22 20.2 18.1 15.2 13.7 11.4 10.8 7.7 7.2 6.3 5.6 4.9 

5.9 6.6 7.9 8.8 10.1 11.7 13.5 15.2 17.2 18.5 18.6 14.4 13.7 3.9 10.6 13 18.3 19.7 22.4 21.6 20.2 18.2 15.6 13.9 11.7 10.3  8 7.3 6.5 5.7  5 

5.7 6.5 7.6 8.4 9.6 11 12.4 13.7 14.5 14.4 12.4 14.2 0.4 -6.7 -8.4 -0.5 8.9 12.8 19.6 19.9 19.2 17.6 15.5 13.7 10.7 10.3 8.3 7.4 6.6 5.7 5.2 

5.5 6.2 7 7.7 8.7 9.6 10.6 11 10.1  9 5.5 -7.9-13.8-24.4-29.2-15.2 -5 4.2 13.9 15.9 16.9 16.2 14.7 13 10.7 10 8.3 7.3 6.6 5.7 5.2 

5.2 5.7 6.5  7 7.4 7.9 7.7 7.2 4.9 0.5 -6.5-20.7-32.2 -36 -36 -36-23.3 -7.7  5 11.1 13.4 13.8 13.1 11.4 10.1 9.3  8 7.2 6.5 5.6  5 

4.9 5.2 5.6 5.6 6 5.6 4.6 2.9-1.6-8.7-17.3-33.9 -36 -36 -36 -36 -36-20.5-5.3 3.8 8.7 10.3 11 10.1 9.1 8.7 7.7 6.9 6.3 5.5 4.9 

4.3 4.3 4.8 4.6 4.5 3.5 1.6-1.2 -9-16.5-29.5 -36 -36 -36 -36 -36 -36 -33-15.8-3.3 3.2 6.2 8.4 8.2 8.3 7.7 7.2 6.5 6 5.3 4.9 

3.9 3.9 3.9 3.5 2.9 1.6-1.9-5.6-14.7-23.6 -36 -36 -36 -36 -36 -36 -36 -36-26.3-11.1 -2.1 2.1 5.6 6.3 7.3 6.9 6.6 6 5.6 5 4.6 

3.6 3.3 3.2 2.4 1.6 -0.4 -4.3 -11 -19-29.8 -36 -36 -36 -36 -36 -36 -36 -36-34.2-17.5 -7.7 -1.2 3.2 4.5 6 5.7 5.9 5.6 5.3 4.8 4.5 

3.3 3.1 2.6 1.6 0.4 -1.6 -6 -12 -26-33.3 -36 -36 -36 -36 -36 -36 -36 -36 -36-24.8-10.7 -5.6 0.4 2.2 4.9 4.8 5.2 4.9 4.9 4.5 4.2 

2.9 2.6 2 1.2 -0.7 -2.8 -7.3-14.5-23.3-34.7 -36 -36 -36 -36 -36 -36 -36 -36 -36-28.8-14.5 -7.7 -1.5 0.8 3.9 3.9 4.6 4.5 4.5 4.1 3.9 

2.6 2.2 1.5 0.7-0.9-3.5 -8-14.8-23.4-34.5 -36 -36 -36 -36 -36 -36 -36 -36 -36-29.8-15.1 -9-3.2-0.5 3.1 3.1 4.1 3.9 4.1 3.9 3.8 

2.4 2.1 1.2 0.4 -1.2 -3.5 -7.9-13.9-22.6 -32 -36 -36 -36 -36 -36 -36 -36 -36 -36-28.2-14.9 -9.4 -4.2 -0.8 2.4 2.5 3.5 3.5 3.6 3.5 3.5 

2.2 1.8 1.1 0.4 -1.2 -3.3 -7.2-12.3 -19-27.7 -36 -36 -36 -36 -36 -36 -36 -36 -36 -25-13.7 -9 -4.3 -0.9 1.9 2.1 3.1 3.2 3.3 3.3 3.2 

2.1 1.6 1.1 0.4-0.9-2.8-5.7-9.8-15.5-21.4-31.1-35.4 -36 -36 -36 -36 -36 -36-31.1-20.2 -11 -7.7-3.9-0.9 1.6 1.9 2.8 2.9 3.1 3.2 3.1 

2.1 1.6 1.1 0.4-0.7-2.1-4.8-7.9-12.4-16.2-23.7-27.1-34.6 -36 -36 -36-34.5-26.4-22.4-14.2-8.6-5.7-2.6-0.7 1.6 1.9 2.6 2.8 2.9 2.9 2.9 

1.9 1.6 1.1 0.7-0.5-1.5-3.5-5.7-8.9 -12-16.8-18.9-25.5 -27-29.4-26.5 -23-18.1-15.2 -11 -6.5-4.2-1.9-0.5 1.6 1.8 2.4 2.6 2.8 2.8 2.8 

1.9 1.6 1.2 0.9 0.4-0.7-2.4-3.9-6.5-8.2 -11-12.3-16.1-17.9-18.9-16.4 -16-12.1 -9-7.3-4.2-2.6-1.2 0.4 1.6 1.8 2.4 2.5 2.6 2.6 2.6 

1.9 1.6 1.4 1.1 0.4 -0.5 -1.2 -2.2 -4.1 -5.2 -7.2 -8.2-10.3-10.7-12.4-10.7 -9.8 -7.2 -6 -4.6 -2.5 -1.4 -0.5 0.8 1.6 1.9 2.2 2.4 2.5 2.5 2.5 

1.9 1.8 1.5 1.2 0.8 0.4 -0.5 -1.2 -2.4 -2.9 -4.3 -4.6 -6.2 -6.3 -7.3 -6.7 -5.9 -4.9 -3.5 -2.5 -1.2 -2.7 0.4 0.9 1.8 1.9 2.2 2.4 2.5 2.5 2.4 

1.9 1.8 1.6 1.5 1.1 0.8 0.4 -0.5 -1 -1.6 -2.4 -2.6 -3.8 -3.9 -4.3 -3.5 -3.3 -2.4 -1.6 -1.1 -0.5 0.4 0.8 1.4 1.9 2.1 2.2 2.4 2.4 2.4 2.4 

1.9 1.9 1.7 1.6 1.4 1.1 0.7 0.4 -0.5 -0.5 -1.1 -1.1 -1.9 -2.2 -2.1 -1.8 -1.6 -0.9 -0.7 -0.5 0.4 0.8 1.2 1.6 1.9 2.1 2.2 2.4 2.4 2.4 2.4 

1.9 1.9 1.8 1.6 1.5 1.4 1.1 0.8 0.4 0.4 -0.5 -0.5 -0.7 -0.8 -1 -0.7 -0.7 -0.4 0.4 0.5 0.9 1.2 1.5 1.8 2.1 2.1 2.2 2.2 2.2 2.2 2.2 

1.9 1.9 1.9 1.8 1.6 1.5 1.4 1.2 0.9 0.8 0.5 0.4 0.4 -0.5 -0.5 -0.4 0.4 0.5 0.8 0.9 1.2 1.5 1.6 1.9 2.1 2.1 2.2 2.2 2.2 2.2 2.2 

1.9 1.9 1.9 1.8 1.8 1.6 1.5 1.5 1.2 1.2 0.9 0.8 0.5 0.4 0.4 0.4 0.5 0.9 1.1 1.4 1.5 1.6 1.8 1.9 2.1 2.1 2.2 2.2 2.2 2.1 2.1 

1.9 1.9 1.9 1.9 1.8 1.8 1.6 1.6 1.5 1.4 1.2 1.1 0.9 0.8 0.8 0.8 0.9 1.2 1.4 1.6 1.6 1.9 1.9 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 

Training Set 2: 105mm HEAT 
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3.2 3.6 4.2 4.8 5.5 6.5 7.7 9.3 10.6 12.4 14.7 17.2 19.5 21.4 21.7 22.6 20.9 19.3 17.8 14.9 13 11.1 9.4 8.3 6.9 5.9  5 4.3 3.9 3.5 2.9 

3.3 3.9 4.3 5 5.7 6.9 8.3 10 11.8 14.1 17.3 20.5 23 25.5 26.1 27.1 25.3 22.9 20.7 17.5 14.9 12.7 10.7  9 7.6 6.3 5.5 4.6 4.1 3.6 3.1 

3.5 3.9 4.5 5.2 6 7.3 8.7 10.6 12.7 15.2 8.9 22.3 25.7 28.8 29.8 30.9 29.2 26.7 23.6 19.9 16.8 13.9 11.4 9.8 8.3 6.9 5.7 4.9 4.3 3.8 3.3 

3.6 4.1 4.6 5.5 6.2 7.4 9 11 13.1 15.9 19.7 23.6 27.5 30.5 32.2 32.6 31.5 28.7 26 21.4 17.9 15.1 12.3 10.6 8.7 7.2 6 5.2 4.5 3.9 3.3 

3.6 4.2 4.8 5.5 6.3 7.6 8.9 11 13.1 15.9 19.2 23 27.1 29.6 31.8 32.2 31.2 29.2 26.7 22.2 18.3 15.5 12.7 10.8 9 7.6 6.2 5.5 4.6 4.2 3.5 

3.6 4.1 4.6 5.5 6.2 7.3 8.4 10.4 12.1 14.8 17.6 20 24 24.8 28.5 28.8 28.4 27 25.5 21.9 18.3 15.5 12.8 10.8 9.1 7.6 6.3 5.5 4.8 4.2 3.5 

3.5 4.1 4.6 5.2 5.7 6.9 7.9 9.4 10.6 12.4 13.5 13.7 15.2 14.8 19.3 19.9 22.9 22.7 22.4 19.9 17.5 15.1 12.5 10.7 9 7.6 6.5 5.5 4.8 4.3 3.6 

3.5 3.9 4.3 4.9 5.5 6.2 7.2 7.9 8.2 9.4 9.3 8.2 6 2.4 5.5 6.6 13.5 15.8 17.3 17.5 13.9 13.9 12 10.3 9 7.6 6.3 5.5 4.8 4.3 3.6 

3.3 3.8 4.2 4.5 4.8 5.5 5.7 5.6 5.6 4.9 2.8 -0.7 -5-13.5 -6.9 -6.5 1.6 6.9 12 13.1 13.5 12.3 11.1 9.6 8.4 7.2 6.2 5.5 4.8 4.2 3.6 

3.3 3.6 3.9 4.1 4.2 4.3 4.2 3.1 2.8 0.4 -3 -8.9-17.5 -26 -27-21.9-10.3 -2.1 9.3 7.9 10.7 10 9.6 8.7 7.9 6.7  6 5.3 4.6 4.2 3.6 

3.1 3.3 3.5 3.6 3.3 3.3 2.8 1.4-0.7-3.6-9.4-18.1 -28-35.5 -36-35.6-23.1 -13-4.3 3.6 7.6 7.6 8 7.6 7.3 6.3 5.6 5 4.5 4.1 3.6 

2.9 3.1 3.2 3.3 2.8 2.4 1.2 -0.5 -3.9 -8.7-16.2-26.7 -36 -36 -36 -36 -35-23.7 -12 -1.9 3.3 5 6.5 6.2 6.5 5.7 5.3 4.8 4.3 3.9 3.5 

2.8 2.9 2.9 2.8 2.4 1.5 0.4-2.1 -6.3-12.1-21.3-33.3 -36 -36 -36 -36 -36-31.8-19.3-6.7-0.5 2.8 4.8 5.3 5.7 5.3 5 4.5 4.2 3.8 3.5 

2.8 2.6 2.6 2.4 1.6 0.9 -0.7 -3.3 -8.2-14.8-24.8-35.4 -36 -36 -36 -36 -36 -36 -25-10.8 -3.3 0.7 3.5 4.2 4.9 4.6 4.6 4.3 4.1 3.6 3.3 

2.6 2.5 2.6 2.2 1.5 0.4 -1.1 -3.8 -8.9-16.8-25.8-35.6 -36 -36 -36 -36 -36 -36-29.4-14.7 -5.7 -0.8 2.1 3.3 4.3 4.3 4.2 4.1 3.9 3.5 3.3 

2.6 2.4 2.4 2.1 1.2 0.4 -1.1 -3.8 -8.7-15.5-23.6-34.5 -36 -36 -36 -36 -36 -36-29.8-15.1 -6.7 -1.6 1.5 2.8 3.8 3.9 3.9 3.8 3.8 3.3 3.2 

2.5 2.4 2.2 1.9 1.1 0.4-0.8-3.6-7.3-13.5 -20-30.6 -36 -36 -36 -36 -36-34.5-26.4-13.8-6.3-1.6 1.2 2.6 3.3 3.6 3.8 3.6 3.5 3.3 3.1 

2.5 2.4 2.2 1.9 1.1 0.7-0.7-2.8 -6-10.1-16.2-23.6-32.6 -36 -36 -36-35.7 -26-20.9-10.3-4.3-0.7 1.5 2.6 3.3 3.5 3.6 3.5 3.3 3.2 3.1 

2.4 2.2 2.1 1.9 1.2 0.9-0.5-1.6-4.2-6.6-11.4-15.8-22.9-23.8-30.4-29.2-25.3-14.8-13.9-5.6-2.1 0.5 1.9 2.9 3.3 3.5 3.5 3.3 3.3 3.1 2.9 

2.2 2.2 2.1 1.9 1.4 1.2 0.4-0.7-2.1 -3.9-7.4 -10-13.2-13.8-16.2 -13-12.4-6.2-6.2-1.2 0.4 0.9 2.6 3.2 3.3 3.5 3.3 3.3 3.2 3.1 2.8 

2.2 2.1 2.1 1.9 1.5 1.2 0.5 0.4 -1.1 -2.2 -4.1 -5 -7.3 -6 -7.7 -4.3 -3.9 -0.5 -0.5 1.5 2.4 2.9 3.3 3.5 3.5 3.3 3.3 3.2 3.1 2.8 2.8 

2.1 2.1 1.9 1.8 1.4 1.2 0.8 0.4 -0.7 -1.6 -2.6 -3.5 -4.5 -4.9 -4.1 -2.4 -0.5 1.5 2.5 3.2 3.5 3.5 2.5 3.5 3.5 3.3 3.2 3.1 2.9 2.8 2.8 

2.1 1.9 1.8 1.6 1.2 1.1 0.4 -0.4 -0.8 -2.1 -3.1 -4.5 -5.7 -7.9 -6.3 -5.3 -1.5 -0.5 1.9 2.8 2.3 3.3 2.3 3.3 3.3 3.2 3.1 2.9 2.8 2.6 2.6 

1.9 1.9 1.6 1.5 0.9 0.5 0.4 -0.8 -1.5 -3.3 -5.2 -7.7 -9.3-14.4-11.4-11.4 -6.7 -4.8 -0.8 0.8 2.2 2.6 2.9 2.8 2.7 2.8 2.8 2.6 2.6 2.5 2.6 

1.8 1.6 1.6 1.4 0.8 0.4-0.5-1.6-3.1 -5.6 -8-11.4-15.2-20.6-19.7-20.9-12.8-9.6-5.2-1.5 0.4 1.2 1.9 2.2 1.5 2.6 2.6 2.5 2.5 2.4 2.5 

1.6 1.6 1.4 1.1 0.4-0.5 -1-2.5-4.2-7.6-10.7-14.7-21.6-28.1-27.9-27.4-20.7-15.2-9.8-4.9-1.6-0.5 0.7 1.5 1.1 2.1 2.2 2.2 2.4 2.2 2.4 

1.6 1.5 1.2 0.9 0.4-0.7-1.6-3.3-3.5-9.7-13.7-17.5-25.7-32.6-33.5-33.3 -27-20.7-13.9 -8-3.9-1.5-0.5 0.8 1.5 1.6 1.9 2.1 2.1 2.1 2.2 

1.6 1.4 1.1 0.7-0.5-0.9-2.2-3.9-6.9 -11-15.2-19.2-29.9 -35 -36 -36-31.2-25.1-18.1-10.7-6.2-3.1-1.1-0.4 0.9 1.2 1.6 1.8 1.9 1.9 2.1 

1.5 1.2 0.9 0.5-0.5-1.2-2.5-4.3 -7 -12-16.8-20.6-30.4-35.6 -36 -36 -33-26.7-20.2-12.4-7.4-4.1-1.9-0.7 0.4 0.9 1.4 1.6 1.8 1.8 1.9 

1.5 1.1 0.8 0.4-0.5-1.4-2.8-4.3-7.6 -12-16.9-20.7-29.8-34.7 -36-35.6-32.8-26.3-20.2-12.8-8.2-4.5-2.4-0.8-0.4 0.7 1.1 1.6 1.6 1.6 1.8 

1.4 1.1 0.8 0.4-0.5-1.4-2.5-4.2-7.2 -11-15.4-19.2-26.7-31.6-34.5-32.8-30.6 -24 -19-12.3 -8-4.6-2.6-0.9-0.5 0.4 0.9 1.2 1.5 1.6 1.6 

1.2 1.1 0.8 0.4-0.5-1.2-2.4-3.9-6.3-9.6-13.4-15.9-22.4-26.8-31.2-28.1-25.5-20.7-15.2-10.7-7.4-4.3-2.6-1.1-0.5 0.4 0.8 1.1 1.4 1.5 1.6 

1.2 1.1 0.8 0.4 -0.5 -1.1 -2.1 -3.2 -5.5 -7.9 -11-12.1-18.1-28.2-23.3-21.4-19.7-17.5-13.2 -9.1 -6.6 -3.8 -2.6 -0.9 -0.5 0.4 0.8 1.1 1.2 1.4 1.6 

1.2 1.1 0.8 0.4 -0.5 -0.8 -1.5 -2.5 -4.2 -6 -8.4 -9.6 -13-15.2-16.6-16.1-14.4-13.4-10.3 -7.3 -5.3 -3.3 -2.1 -0.8 -0.5 0.4 0.7 0.9 1.2 1.4 1.5 

1.2 1.1 0.8 0.7 0.4 -0.5 -1.1 -1.8 -3.2 -4.5 -5.9 -7.3 -9.3-10.1 -11-11.1-10.1 -9.4 -7.9 -5.6 -4.1 -2.6 -1.6 -0.7 -0.5 0.4 0.8 0.9 1.2 1.4 1.5 

Test Set: 3-5in Rocket 
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1.6 1.8 1.9 2.1   2.2   2.6   2.8   3.1   3.2   3.3   3.8   3.9   3.8   3.9   3.9   3.8   3.6   3.3   3.2   3.1   2.8   2.6   2.5   2.2   2.1   1.9   1.9   1.6   1.5   1.5   1.4 

1.6 1.9 2.1 2.4   2.5   2.8   3.2   3.3   3.8   4.1   4.5   4.6   4.8   4.8   4.8   4.6   4.5   4.1   3.8   3.5   3.3   2.9   2.8   2.5   2.2   2.1   1.9   1.6   1.6   1.5   1.5 

1.8 2.1 2.2 2.6   2.8   3.2   3.5   3.9   4.3   4.8   5.2   5.7   5.6   5.9   5.6   5.7   5.2   5.2   4.3   4.2   3.8   3.3   3.1   2.8   2.4   2.2   1.9   1.9   1.6   1.6   1.5 

1.8 2.2 2.4 2.8   3.1   3.5   3.9   4.5   5.2   5.6   6.5     7   6.9   7.2   7.2   6.7   6.6   6.3     5     5   4.3   3.8   3.3   3.1   2.6   2.4   2.1   1.9   1.8   1.6   1.5 

1.9 2.4 2.6 3.1   3.3   3.9   4.5   5.2   6.2   6.9   7.7   8.4   8.6   8.9   8.9   8.4   7.9   7.4   6.6   5.9     5   4.3   3.8   3.3   2.9   2.6   2.2   2.1   1.9   1.6   1.5 

2.1 2.4 2.8 3.2   3.8   4.5     5   5.9   7.2     8   9.4 10.6 10.1  11.1    11  11.1   9.7     9   7.7   6.7   5.7   4.9   4.2   3.8   3.2   2.6   2.4   2.2   1.9   1.8   1.6 

2.1 2.5 2.9 3.5   3.9  4.9   5.6  6.7    8  9.4 11.3 12.7    13 14.1  13.7 13.5 11.7 10.7  9.1   7.9  6.6  5.5  4.6  3.9   3.3   2.9  2.5   2.2  2.1   1.8   1.6 

2.1 2.6 2.9 3.5   4.1   5.2   5.9   7.4   8.9 10.7 12.8 15.2 15.2 17.3 16.2 16.5 13.9    13 10.4     9   7.4   6.2     5   4.3   3.5   3.1   2.6   2.4   2.1   1.9   1.6 

2.1 2.6 3.1 3.5   4.2   5.3   6.3   7.7   9.7 11.7 14.9 17.6 18.1 20.6    21  19.6 16.9 14.9 12.3    10   8.3   6.6   5.5   4.5   3.8   3.2   2.6   2.4   2.1   1.9   1.6 

2.1 2.6 2.9 3.5   4.1   5.3   6.2   7.9    10 12.4 15.9 18.9 20.6 23.3    23    22 18.6 16.9 13.4    11   8.9     7   5.6   4.6   3.9   3.3   2.8   2.5   2.2   1.9   1.7 

2.1 2.4 2.8 3.3   3.9   4.9   5.7   7.4   9.4 11.5 15.5 18.3 21.2 23.4 24.3 23.3 20.5 17.5 14.2 11.3   9.1   7.2   5.9   4.8   3.9   3.3   2.9   2.5   2.2   1.9   1.8 

1.9 2.2 2.5 3.1   3.5  4.3    5   6.2  7.9  9.7 13.2 14.9 19.2 20.5 22.9 21.6 20.2 16.2 13.9 10.8    9   6.9   5.7   4.6   3.9  3.2  2.8   2.4   2.2   1.9   1.6 

1.8 2.1 2.2 2.5   2.4   3.5  3.9  4.5   5.6    6   8.3     9 13.8 13.5 15.9 16.4 16.6 13.2 12.4  9.8   8.4  6.3   5.5  4.3   3.8   3.1   2.6   2.4  2.1   1.8   1.6 

1.6 1.8 1.8 2.1   2.1   2.1   2.5   1.9   1.8   1.2  2.1 -0.8 -1.2   1.9  5.3  6.3   9.7   8.6 10.1   7.4    7   5.3   4.8   3.9  3.3   2.8  2.6  2.2   2.1   1.8   1.6 

1.4 1.5 1.4 1.4   1.2   0.5  0.8-1.2-2.4-3.2-7.3-13.5-9.6-12.7-7.2-4.1   4.2  3.9  6.2  4.9    5   3.9  4.2  3.3   3.1   2.6  2.4   2.1   1.9   1.6   1.6 

1.1 1.2 0.9 0.8  0.5-0.8-1.1 -3.9-5.2-7.9-14.5-20.7-22.3-27.7-20.6-14.9-7.2-3.9  0.8   1.5   2.8  2.8  3.1   2.8  2.6  2.2  2.2   1.9   1.9   1.6   1.6 

0.9 1.1 0.5 0.4-0.5-1.8-2.6-5.7-8.3-13.8-20.5-28.4-31.6-33.7-29.6-23.3-14.7   -9-3.3-1.1   0.4  1.1   1.9  1.9  2.1   1.9   1.9  1.8   1.6   1.5   1.6 

0.8 1.8 0.4-0.4-0.8-2.4-3.9-7.2  -11-16.9-24.3-31.8  -35  -36-34.3   -29-19.3-12.4-6.9-3.3-1.2  0.4   0.9   1.4   1.6   1.6   1.6   1.5   1.6   1.4   1.5 

0.7 0.5 0.4-0.5-1.2-3.1-4.5-7.9-11.8-17.9-26.5-32.6-35.7   -36  -36-30.9-23.1-15.4-9.6-5.9-2.9-1.1   0.4  0.5   1.1   1.2   1.5   1.4   1.5   1.2   1.5 

0.5 0.4-0.4-0.7-1.5-3.3    -5-7.4-12.4-17.5   -27-31.5-35.2   -36-35.9-30.6-24.3-16.2   -11-6.9-3.9-1.6-0.7   0.4   0.8   0.9   1.2   1.2   1.4   1.2   1.4 

0.4 0.4-0.5-0.7-1.6-3.3-4.9-7.3-11.7-15.6-23.7-27.5-32.6-33.6-33.9-27.7-22.9-15.8-11.1-7.2-4.3-2.2-0.9-0.5   0.5   0.8   0.9   1.1   1.2   1.2   1.2 

0.4 0.4 -0.5 -0.7 -1.6 -2.9 -4.5 -6.5-10.4-13.2-19.6-22.6-27.5-28.5-29.6-22.7-19.9-14.1-10.3 -6.7 -4.5 -2.4 -1.1 -0.5   0.4   0.5   0.8   0.9   1.1   1.1   1.2 

0.4 0.4-0.5-0.7-1.4-2.6-4.2-5.5-8.7   -11-15.8-17.6   -22-21.3   -23-17.1-15.8-11.3-8.9    -6-4.2-2.2-1.2-0.5   0.4   0.5   0.8   0.9   1.1   1.1   1.2 

0.4 0.4 -0.5 -0.7 -1.2 -2.1 -3.3 -4.3 -6.7    -8-12.1-12.3-16.2-16.1-16.4-13.2-12.3 -8.9 -7.3 -4.9 -3.6 -1.9 -1.1 -0.5   0.4   0.5   0.8   0.9   0.9   1.1   1.1 

0.5 0.4 -0.4 -0.5 -0.8 -1.6 -2.6 -3.3    -5 -6.5 -9.3 -9.3   -11-11.4   -12 -9.6    -9 -6.7 -5.5 -3.9 -2.8 -1.5 -0.9 -0.5   0.4   0.5   0.8   0.9   0.9   1.1   1.1 

0.5 0.5 0.4 -0.4 -0.7 -1.1 -2.1 -2.2 -3.9 -4.5    -7 -6.7 -8.4 -8.3 -8.7 -6.9 -6.6 -4.9 -4.1 -2.9 -2.1 -1.1 -0.7 -0.5   0.4   0.5   0.8   0.9   0.9   1.1   1.1 

0.5 0.5 0.4 0.4 -0.5 -0.7 -1.4 -1.6 -2.8 -3.3 -4.6 -4.8 -5.7 -5.5    -6 -4.8 -4.5 -3.5 -2.9 -2.1 -1.5 -0.8 -0.5   0.4   0.4   0.7   0.8   0.9   0.9   1.1   1.1 

0.5 0.7 0.4 0.4 -0.5 -0.5 -0.8 -0.9 -1.8 -2.1 -3.1 -3.1 -3.5 -3.5 -3.8 -3.2 -3.2 -2.5 -2.1 -1.4 -0.9 -0.5 -0.5   0.4   0.4   0.8   0.8   0.9   0.9   1.1   1.1 

0.7 0.8 0.5 0.5   0.4   0.4 -0.5 -0.7 -1.1 -1.2 -1.8 -1.8 -2.6 -2.2 -2.5 -1.9 -2.1 -1.5 -1.2 -0.8 -0.7 -0.5   0.4   0.4   0.5   0.8   0.8   0.9   0.9   1.1   1.1 

0.8 0.8 0.5 0.7   0.4   0.4 -0.5 -0.5 -0.7 -0.7 -0.9 -0.9 -1.4 -1.4 -1.5 -1.1 -1.1 -0.8 -0.8 -0.5 -0.5   0.4   0.4   0.5   0.7   0.8   0.9   0.9   0.9   1.1   1.1 

0.8 0.9 0.7 0.8   0.5   0.5   0.4   0.4 -0.5 -0.5 -0.7 -0.5 -0.7 -0.7 -0.8 -0.5 -0.7 -0.5 -0.5   0.4   0.4   0.4   0.4   0.7   0.8   0.8   0.9   0.9   1.1   1.1   1.1 

0.9 0.9 0.8 0.9   0.7   0.7   0.4   0.4   0.4   0.4 -0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.4   0.4   0.4   0.4   0.5   0.7   0.8   0.9   0.9   0.9     1   1.1   1.1   1.1 

0.9 0.9 0.8 0.9   0.8   0.8   0.7   0.7   0.5   0.5   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.5   0.5   0.7   0.8   0.8   0.9   0.9   0.9   1.1   1.1   1.1   1.1 

1.1 1.1 0.8 1.1   0.8  0.9  0.8  0.8  0.7   0.7  0.5   0.5   0.4  0.4  0.4  0.4  0.4  0.5   0.5  0.7   0.7   0.8  0.8  0.9  0.9   0.9  0.9   1.1   1.1     1   1.1 

1.1 1.1 0.9 1.1   0.9   1.1   0.9  0.9  0.8  0.8  0.8  0.8  0.5  0.7   0.7  0.7  0.7   0.7  0.8  0.8   0.8  0.8   0.9  0.9  0.9   1.1   1.1   1.1   1.1   1.1   1.1 

Test Set: 60mm Mortar 
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2.5 2.6 3.1 3.3 3.9 4.2  5 5.6 6.2 6.6  7 7.6 7.9  8 8.7 8.2 7.6  7 6.7 6.2 5.7 5.2 4.9 4.2 3.9 3.3 3.2 2.8 2.6 2.4 2.2 

2.6 3.1 3.3 3.8 4.2 4.6 5.7 6.2 7.2 7.7 8.6 9.4 9.8 10 10.7 10 9.4 8.7 8.3 7.4 6.7 5.9 5.5 4.8 4.3 3.8 3.3 2.9 2.8 2.5 2.2 

2.8 3.2 3.5 4.2 4.8 5.3 6.6 7.2 8.4 9.4 10.1 11.7 12.3 12.5 13.5 13 11.3 10.7 10 8.7  8  7 6.5 5.5 4.9 4.2 3.8 3.3 3.1 2.6 2.4 

3.1 3.5 3.9 4.6  5  6 7.3 8.4 9.7 11.4 12.3 15.2 15.5 16.4 17.1 15.8 13.9 13.1 12 10.7 9.4 8.4 7.2 6.2 5.5 4.6 4.2 3.5 3.3 2.8 2.5 

3.2 3.6 4.1 4.9 5.5 6.7 8.2 9.6 11.1 13.2 14.9 17.9 19.2 20.2 22 19.9 17.8 16.4 14.4 12.7 11 9.4 8.3  7 6.2 5.2 4.3 3.9 3.5 3.1 2.6 

3.3 3.8 4.3 5 6 7.3 9 10.6 12.3 14.8 17.6 21.4 24 25.3 26.7 24.8 22.4 20.6 17.3 15.1 13 10.8 9.3 7.9 6.6 5.6 4.8 4.1 3.6 3.2 2.8 

3.3 3.9 4.5 5.3 6.3 7.7 9.4 11.4 13.5 16.8 20.7 24.7 28.8 30.8 32 30.6 27.2 24.3 20.9 17.5 14.5 12.1 10.3 8.7 7.3  6  5 4.3 3.8 3.3 2.9 

3.3 3.9 4.5 5.5 6.5 7.9 9.8 11.8 14.2 17.8 22.2 26.5 31.2 33.6 35.2 34 31.1 27.9 23.7 19.7 16.6 13.7 11.3 9.4 7.9 6.3 5.3 4.6 3.9 3.5 3.1 

3.5 4.1 4.5 5.5 6.3 7.9 9.6 11.7 14.5 17.6 22.2 26.5 31.8 33.6 35.4 35 33.5 30.5 26.1 21.6 17.9 14.7 12.1 9.8 8.2 6.6 5.5 4.8 4.1 3.5 3.1 

3.3 3.9 4.3 5.3 6.2 7.7  9 11.1 13.4 16.4 19.6 23 28.2 30.4 21.2 32.6 33.2 30.5 26.8 22.4 18.9 15.2 12.7 10.1 8.4 6.7 5.6 4.9 4.2 3.6 3.1 

3.2 3.8 4.2 4.9 5.5 7 7.9 9.8 11.3 13.1 14.5 13.7 18.2 20.3 20 23.3 29.5 27.1 25.8 21.9 19 15.1 12.8 10 8.4 6.9 5.6 4.9 4.2 3.6 3.2 

3.1 3.5 3.9 4.5 4.9  6  7 7.7 8.4 9.3 8.4 6.2 5.9 4 3.9 8.3 19.7 19.5 21.9 19.6 17.5 14.1 12 9.6 8.3 6.6 5.6 4.8 4.2 3.5 3.2 

2.8 3.2 3.3 3.9 4.2 4.6 4.8 5.6 4.2 4.6 0.5 -2.4 -6.7 -13-11.7 -6.8 6.7 10.4 16.9 16.1 14.7 12.7 11 8.9 7.6 6.2 5.3 4.5 4.1 3.5 3.1 

2.5 3.1 3.1 3.3 3.3 3.3 2.9 2.6 0.8 -0.7 -8.9-13.2-21.6-30.4-28.5-20.7 -7.2 0.9 8.7 9.8 11.1 10 9.3 7.7 6.9 5.7 4.9 4.3 3.9 3.3 3.1 

2.2 2.6 2.4 2.6 2.1 2.2 0.4 0.4 -2.4 -6.7 -16.4 -20.9 -23.5 -36 -36 -34 -20 -9.3 0.4 4.2 6.2 6.9 7 6.5 5.9 5 4.5 3.9 3.6 3.2 2.8 

1.9 2.2 1.8 2.1 0.9 0.8-1.2-2.5 -6-11.3-22.9-28.1 -36 -36 -36 -36-30.9-19.2-8.9-1.4 2.2 4.1  5 4.9 4.8 4.3 4.1 3.5 3.3 2.9 2.8 

1.6 1.9 1.5 1.5 0.4-0.5-3.1 -4.8-9.4-15.1-27.5 -30 -36 -36 -36 -36 -36-29.4-15.4-8.2-0.9 0.4 3.3 2.8 3.5 3.5 3.5 3.1 3.1 2.6 2.6 

1.5 1.6 1.1 0.9 -0.7 -1.1 -4.2 -6.7-10.6-17.5-29.1 -36 -36 -36 -36 -36 -36-32.8 -22-11.7 -5.7 -1.8 0.5 1.6 2.6 2.6 2.9 2.6 2.8 2.5 2.4 

1.4 1.4 0.8 0.5 -0.8 -1.8 -4.9 -7.7-12.3-18.9 -30 -36 -36 -36 -36 -36 -36 -36-26.7-17.1 -9.3 -4.9 -1.4 0.4 1.5 1.8 2.4 2.2 2.5 2.2 2.2 

1.2 1.1 0.4 0.4 -1.2 -2.5 -5.5 -8.6 -14-19.5 -31 -36 -36 -36 -36 -36 -36 -36-28.9 -19-11.3 -6.3 -2.8 -0.9 0.5 1.2 1.6 1.8 2.1 2.1 2.1 

1.1 0.9 0.4 0.4-1.4-2.8-5.6-8.4-13.4 -19-30.5 -36 -36 -36 -36 -36 -36 -36-30.1-20.2-12.8-7.4-4.1 -1.6-0.4 0.5 1.4 1.5 1.8 1.8 1.9 

0.9 0.9 0.4-0.5-1.5-2.8-5.5-8.4-13.2-17.3-27.9-34.7 -36 -36 -36 -36 -36-35.9-28.8-19.7-13.2-7.9-4.6-2.1-0.7 0.4 0.9 1.1 1.6 1.6 1.6 

0.9 0.8 0.4-0.5-1.5-2.6-5.2-7.6-11.3-15.6-24.3-30.4 -36 -36 -36 -36 -36-32.8-25.8-18.2-12.3-7.6-4.3-2.4-0.9 0.4 0.8 0.9 1.5 1.5 1.6 

0.9 0.7 0.4-0.5-1.2-2.1-4.6-6.7 -10-12.4 -20 -25 -33-34.2 -36-34.6-32.5-28.1-20.9-15.6-10.7-6.6-4.3-2.5-0.9-0.5 0.5 0.8 1.2 1.4 1.5 

0.9 0.8 0.4 0.4 -0.9 -1.5 -3.8 -5.6 -8.7 -9.8 -16 -19-26.5-28.2-31.3-28.4-27.2 -21-16.5-12.4 -8.9 -5.7 -3.8 -2.1 -0.8 -0.5 0.5 0.8 1.2 1.2 1.4 

0.9 0.8 0.4 0.4-0.8-0.9-3.2-4.5-6.6-8.2-12.1-14.8-19.2-20.3-23.3-20.9-19.2-16.6-12.8 -10-7.2-4.5-3.2-1.8-0.8-0.5 0.5 0.8 1.1 1.2 1.6 

0.9 0.8 0.4 0.4-0.7-0.7-2.4-3.2-5.2 -6-9.1 -10-13.9-15.5-15.8-15.2-13.9-12.3 -10-7.6-5.6-3.6-2.5-1.4-0.7 0.4 0.5 0.8 1.1 1.2 1.2 

0.9 0.9 0.4 0.5 -0.5 -0.5 -1.6 -2.5 -3.8 -4.3 -6.2 -7.3 -9.7 -10-11.1 -10 -9.7 -8.3 -7.2 -5.3 -4.2 -2.6 -1.9 -0.9 -0.5 0.4 0.5 0.8 1.1 1.1 1.2 

0.9 1 0.5 0.8 0.4 0.4 -0.9 -1.5 -2.2 -2.2 -4.3 -4.6 -6.7 -7.2 -7.7 -7 -6.7 -5.7 -4.9 -4.1 -2.9 -1.8 -1.2 -0.7 -0.4 0.4 0.7 0.8 1.1 1.1 1.2 

1.1 1.1 0.8 0.9 0.4 0.7 -0.7 -0.8 -1.5 -1.6 -2.6 -3.3 -4.5 -4.9 -4.6 -4.3 -4.5 -3.9 -3.3 -2.4 -1.9 -1.1 -0.8 0.5 0.4 0.4 0.8 0.9 1.1 1.1 1.2 

1.1 1.1 0.8 0.8 0.4 0.4 -0.5 -0.5 -0.8 -0.8 -1.6 -2.1 -2.8 -3.6 -2.8 -2.9 -2.5 -2.5 -1.9 -1.6 -1.1 -0.5 -0.5 0.4 0.4 0.7 0.9 0.9 1.1 1.2 1.2 

1.1 1 0.9 0.8 0.7 0.5 0.4 0.4 -0.5 -0.5 -0.8 -0.9 -1.6 -1.6 -1.8 -1.6 -1.5 -1.2 -0.9 -0.8 -0.5 -0.5 0.4 0.4 0.7 0.8 0.9  1 1.2 1.2 1.2 

1.2 1.1 1 0.9 0.8 0.5 0.5 0.5 0.4 0.4 -0.5 -0.7 -0.8 -0.7 -0.8 -0.7 -0.7 -0.8 -0.5 -0.5 -0.5 0.4 0.4 0.5 0.8 0.8 1.1 1.1 1.2 1.2 1.2 

1.2 1.1 1.1 0.9 0.9 0.8 0.8 0.5 0.4 0.4 0.4 0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.4 0.4 0.4 0.4 0.7 0.7 0.9 0.9 1.1 1.1 1.2 1.2 1.2 

1.2 1.2 1.2 0.9 0.9 0.9 0.9 0.8 0.7 0.7 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.5 0.7 0.8 0.8 0.9 1.1 1.1 1.2 1.2 1.2 1.2 

Test Set: 81mm Mortar 
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2.2 2.2 2.4 2.4 2.5 2.5 2.6 2.6 2.6 2.6 2.6 2.8 2.8 2.9 3.1 3.1 3.2 3.3 3.2 3.3 3.2 3.1 3.1 2.9 2.9 2.8 2.6 2.6 2.5 2.4 2.2 

2.4 2.4 2.5 2.6 2.6 2.6 2.6 2.6 2.8 2.8 2.9 2.9 3.1 3.2 3.2 3.3 3.5 3.6 3.6 3.6 3.5 3.5 3.3 3.3 3.2 3.1 2.9 2.8 2.6 2.5 2.4 

2.5 2.5 2.6 2.6 2.8 2.8 2.8 2.8 2.9 2.9 2.9 3.1 3.2 3.3 3.5 3.8 3.9 3.9 4.1 3.9 3.9 3.9 3.8 3.6 3.5 3.3 3.2 3.1 2.9 2.6 2.5 

2.6 2.6 2.8 2.8 2.9 2.9 2.9 2.9 2.9 2.9 3.1 3.2 3.3 3.5 3.8 4.1 4.3 4.3 4.5 4.6 4.3 4.3 4.2 4.1 3.9 3.8 3.5 3.3 3.1 2.9 2.6 

2.8 2.8 3.1 3.1 3.1 3.1 3.1 3 2.9 2.9 3.1 3.2 3.3 3.8 4.1 4.3 4.8 4.9 5 5 4.9 5 4.8 4.5 4.3 4.2 3.9 3.6 3.3 3.2 2.9 

2.9 3.1 3.2 3.2 3.2 3.2 3.1 3.1 2.8 2.8 2.8 2.9 3.2 3.8 4.3 4.8 5.3 5.6 5.7 5.9 5.5 5.7 5.3 5 4.8 4.6 4.3 4.1 3.8 3.5 3.2 

3.1 3.2 3.3 3.3 3.3 3.2 3.2 2.9 2.6 2.4 2.4 2.4 2.9 3.5 4.3 5.2 5.7 6.2 6.6 6.7 6.5 6.6 6 5.9 5.3 5.2 4.8 4.5 4.1 3.8 3.3 

3.2 3.3 3.5 3.5 3.5 3.3 3.2 2.8 2.4 1.9 1.6 1.6 1.8 2.6 3.9  5  6 6.7 7.2 7.4 7.2 7.3 6.7 6.5  6 5.6 5.2 4.8 4.3 4.1 3.6 

3.5 3.6 3.6 3.8 3.6 3.3 3.1 2.5 1.9 0.8 0.4 -0.5 -0.4 0.7 2.4 4.2 5.6 7.2 7.9 8.4 8.3 8.4 7.9 7.3 6.7 6.3 5.7 5.3 4.8 4.3 3.9 

3.6 3.9 3.9 3.9 3.8 3.5 3.1 2.2 1.2 -0.8 -1.6 -3.1 -3.5 -3.1 -0.9 1.8 4.2 6.9 8.4 9.4 9.6 9.7 8.9 8.4 7.6 7.2 6.3 5.9 5.2 4.8 4.1 

3.9 4.1 4.2 4.2 3.9 3.6 3.1 2.1 0.8 -1.5 -4.1 -6.3 -8.7 -8 -6 -1.6 2.2 6.7 9.1 10.8 11 11 10.1 9.7 8.4 7.7 6.9 6.3 5.6 5.2 4.3 

4.1 4.2 4.3 4.3 4.2 3.9 3.2 1.9 0.4 -2.9 -6.7-10.3-13.7-14.1-11.8 -5.6 0.7 7.7 11 13.5 12.8 12.7 11.7 10.7 9.3 8.6 7.6 6.9  6 5.5 4.6 

4.3 4.5 4.6 4.6 4.5 4.2 3.3 2.1 0.5 -3.8 -8.4-13.1-17.8-19.6-16.1 -7.2 0.9 10.3 13.7 15.8 15.1 14.7 13 11.8 10.1 9.4 8.3 7.3 6.6 5.9 4.9 

4.5 4.6 4.9 4.9 4.8 4.5 3.8 2.2 0.7 -3.6 -8.9-13.8 -19-20.2-15.9 -5 4.9 14.8 17.3 18.8 17.8 16.8 14.5 13.1 11.1 10.3 8.9 7.9  7 6.2 5.2 

4.6 4.9 5 5.2 5.2 4.8 4.1 2.8 0.4 -2.8 -7.3 -12-16.2-16.4-10.8 0.8 11.4 19.6 21 22.4 20.3 18.9 16.4 14.2 12 11 9.6 8.4 7.4 6.6 5.5 

4.8 5 5.3 5.5 5.3 5 4.3 3.2 0.9 -1.9 -5.6 -9.6-12.1 -9.1 -3.1 8.7 16.6 23.8 24 24.1 22.3 19.9 17.5 15.2 13 11.5 10.1 8.9 7.9 6.7 5.6 

4.9 5.2 5.3 5.5 5.3 5 4.3 3.2 1.1 -1.6 -4.9 -7.6 -8.6 -4.2 2.4 -13 20.5 24.8 26 25 23.1 20.5 18.2 15.8 13.4 12 10.6 9.1 8.2 7.2 5.9 

4.9 5.2 5.3 5.5 5.2 4.6 4.1 2.6 0.4 -2.8 -6.3 -9.1 -9.6 -6.6 0.4 -10 17.8 21.2 23.8 23.7 22.4 20.2 18.2 15.9 13.5 12.3 10.8 9.4 8.3 7.2 6.2 

4.9 5.2 5.3 5.3 4.8 4.2 3.3 1.2 -1.5 -6.6 -9.8-16.5-17.5-15.9-13.8 -3.5 0.5 13.4 18.2 19.6 20.3 19 17.8 15.8 13.8 12.4 11 9.6 8.4 7.3 6.2 

4.9 5 5 4.9 4.2 3.3 2.1 -0.7 -4.5-10.7-15.8-26.1-30.5 -34-30.9-26.8 -10 -0.7 10 15.5 17.5 17.1 16.8 15.2 13.7 12.4 11 9.6 8.4 7.4 6.3 

4.8 4.9 4.8 4.3 3.5 2.2 0.7 -2.9 -8-15.6-23.8-34.2 -36 -36 -36 -36-30.4-13.9 0.5 9.1 14.1 15.2 15.5 14.4 13.4 12 10.7 8.4 9.4 7.4 6.3 

4.6 4.6 4.3 3.9 2.6 0.5 -1.1 -5.2-12.8 -21-30.9 -36 -36 -36 -36 -36 -36-24.8 -7.7 4.2 10 12.8 13.9 13.5 12.8 11.7 10.6 9.3 8.4 7.3 6.2 

4.3 4.3 4.1 3.3 1.6 -0.7 -3.1 -7.7-15.8-26.3 -36 -36 -36 -36 -36 -36 -36-31.8 -14 0.5 7.2 10.8 12.8 12.7 12.1 11.3 10.1  9 8.2 7.2 6.2 

4.2 4.1 3.6 2.5 0.7 -2 -5 -10-19.7-30.6 -36 -36 -36 -36 -36 -36 -36-35.7-18.3 -2.2 5.2 9.4 11.5 11.8 11.4 10.7 9.8 8.9  8  7 6.2 

3.9 3.8 3.2 2.1 -1.4 -3.3 -7-12.5-23.3-34.2 -36 -36 -36 -36 -36 -36 -36 -36-20.2 -4.2 3.5  8 10.3 11 10.7 10.1 9.4 8.4 7.7 6.9  6 

3.8 3.5 2.9 1.8-1.7-3.8-8.3-14.2-26.1-35.7 -36 -36 -36 -36 -36 -36 -36 -36-23.1 -6 1.8 6.7 9.4 10 10.1 9.6 8.9  8 7.4 6.6 5.9 

3.5 3.2 2.5 1.2 -1.4 -4.6 -9.1-15.5-28.1 -36 -36 -36 -36 -36 -36 -36 -36 -36 -25 -7.6 0.4 5.3 8.3 9.1 9.4  9 8.6 7.7 7.2 6.9 5.6 

3.3 3.1 2.2 1.9-1.6 -5 -9.6-15.8-28.4 -36 -36 -36 -36 -36 -36 -36 -36 -36-27.1 -9.7-1.2 3.9 7.2 8.2 8.7 8.3 7.9 7.2 6.7 6.2 5.5 

3.3 2.8 2.1 1.8 -1.8 -4.9 -9.8-15.8-28.4 -36 -36 -36 -36 -36 -36 -36 -36 -36-26.3-10.3 -2.4 3.2 6.2 7.2 7.9 7.6 7.4 6.7 6.5 5.7 5.3 

3.1 2.6 1.6 1.7-1.9-4.8-9.4-14.8-26.8-35.4 -36 -36 -36 -36 -36 -36 -36 -36-24.6-9.8-2.6 2.4 5.3 6.5 7.2  7 6.9 6.5  6 5.5  5 

2.9 2.5 1.6 1.7 -1.6 -4.3 -8.7-12.8 -23-31.5 -36 -36 -36 -36 -36 -36 -36-32.9-21.2 -8.9 -2.6 2.1 4.6  6 6.5 6.6 6.2  6 5.6 5.2 4.8 

2.9 2.5 1.8 1.8-1.1 -3.3-6.9-10.6-18.9-26.5-25.2 -36 -36 -36 -36 -36 -36-26.4-17.2-7.2-2.1 2.1 4.2 5.3 5.9  6 5.9 5.6 5.3 4.9 4.5 

2.8 2.5 1.9 1.1 -0.7-2.4-5.3-7.9-14.4-19.5-28.1-31.3 -36 -36 -36-34.3-28.5-18.9-12.3-5.6-1.2 2.1 3.8 4.9 5.5 5.5 5.5 5.3  5 4.6 4.3 

2.8 2.5 2.1 1.4-0.4-1.2-3.3-5.5-9.6-13.5 -19 -21-29.2-31.5-28.4-24.6-19.2 -13-8.3-3.9-0.7 2.1 3.5 4.5 4.9 5.2  5 4.9 4.6 4.3 4.1 

2.8 2.5 2.1 1.6 0.7-0.5-1.8-3.2 -6-8.7-11.8-12.8-16.9-18.2-17.5-13.5-11.1 -8.4 -5-1.6 0.5 2.4 3.5 4.2 4.6 4.6 4.6 4.5 4.3 4.1 3.9 

Test Set: 105mm Artillery 
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3.1 3.2 3.8 3.9 4.3 4.5 5.3 5.5 6.3 6.5 7.3 7.4 7.9 7.9 7.9 8 7.9 7.4 7.4 6.6 6.7 5.7 5.7 4.9 4.6 4.1 3.8 3.3 3.3 2.9 2.8 

3.2 3.5 4.1 4.3 4.8 5 5.9 6.3 7.2 7.7 8.7 8.7 9.7 9.6 9.6 9.6 9.1 8.7 8.9 7.9 7.7 6.7 6.6 5.6 5.2 4.5 4.2 3.8 3.5 3.2 2.9 

3.3 3.6 4.3 4.9 5.3 5.7 6.6 7.2 8.2 8.9 10.3 10.4 11.1 11.3 10.9 11.4 10.6 10.7 10.1 9.3 8.7 7.9 7.4 6.6 5.6 5.2 4.6 4.2 3.8 3.5 3.2 

3.6 3.9 4.6 5.3 5.7 6.6 7.3 8.4 9.1 10.7 11.5 12.4 13.2 13.5 13.9 13.7 13.2 12.8 11.7 11.3 10.4 9.1 8.4 7.4 6.5 5.6 5 4.5 4.2 3.8 3.3 

3.9 4.2 5 5.6 6.2 7.4 8.4 9.4 10.4 12.1 13.7 14.9 16 16.8 17.3 16.6 16.8 15.6 13.9 13.4 12.1 10.6 9.6 8 7.2 6.3 5.5 4.9 4.5 3.9 3.5 

4.1 4.5 5.3  6 6.6  8 9.4 10.7 11.7 13.9 15.8 18.1 19.2 21.3 20.9 21.2 20.2 18.6 17.3 15.4 14.1 12.1 10.8 9.1 7.9 6.7  6 5.3 4.8 4.2 3.8 

4.2 4.6 5.6 6.6  7 8.9 10.3 11.8 13.9 15.9 17.3 21.6 23.6 26.3 26 25.8 25.5 22 20.7 17.9 16.1 13.8 12.1 10.1 8.7 7.4 6.6 5.7 5.2 4.5 3.9 

4.3 4.9 5.7 6.7 7.4 9.1 10.7 12.5 14.9 18.1 21.9 25.7 27.8 31.1 31.1 31.9 30.4 26.8 24 21 18.2 15.4 13.4 11  9 8 7 6.2 5.5 4.8 4.1 

4.3 4.9 5.9 6.9 7.6 9.6 11 13.5 16.4 20.2 24.6 30.8 33.9 36 36 36 33.6 31.3 27.2 24.3 20.5 16.9 14.5 12 10.1 8.7 7.3 6.5 5.6 4.9 4.2 

4.5 4.9 5.7 6.9 7.6 9.6 11 13.5 16.5 20.9 26 32.5 36 36 36 36 36 33.9 29.2 26.1 21.9 18.2 15.4 12.7 10.7 8.9 7.6 6.7 5.9 5 4.3 

4.3 4.9 5.6 6.7 7.4 9.1 10.4 12.5 15.5 19.7 24.8 30.5 36 36 36 36 36 34.5 31.3 26.8 22.9 18.9 15.9 13.1 11  9 7.9 6.9 6 5.2 4.5 

4.3 4.6 5.3 6.3 6.9 8 9.4 10.8 13.5 15.6 20.7 24.6 34.2 33.7 36 35.9 25.3 31.6 30.5 24.4 22 17.6 15.8 13 11 9.1 7.9 6.9 6 5.3 4.5 

4.1 4.5 4.9 5.7 6.2 6.9 7.6 8.4 8.9 8.6 10.7 6.7 11.8 18.9 21.4 21.3 23.1 22 24.7 21.2 19.7 15.2 14.5 12.4 10.7 8.9 7.7 6.7 6 5.2 4.5 

3.8 4.1 4.3 4.9 5.2 5 5.5 4.5 3.6 0.5 -0.5 -5.3 -7.9 -7.7-14.5 -7.2 3.6 7.6 14.8 13.8 15.2 13.8 13 10.8 10 8.3 7.3 6.5 5.7 5 4.5 

3.5 3.8 3.9 4.2 4.2 3.2 2.9 0.9 -2.1 -6.2 -14 -24 -36 -36 -36-34.5-23.4 -8.6 1.2 5.7 10.4 10.6 10.3 9.7 9 7.7 6.9 6.2 5.6 4.9 4.3 

3.3 3.3 3.1 3.3 3.1 1.5 0.4-2.9 -9-15.1-26.4 -36 -36 -36 -36 -36 -36-27.2-11.8-3.5 3.9 5.9 7.3 7.6 7.7 6.7 6.3 5.7 5.2 4.6 4.2 

2.8 3.1 2.5 2.5 2.1 -0.8 -1.8 -7-17.1-24.3 -36 -36 -36 -36 -36 -36 -36 -36-24.8-13.5 -3.1 1.6 4.3 5.5 6.2 5.7 5.6 5.2 4.9 4.5 3.9 

2.6 2.6 2.1 1.8 1.1 -2.2 -4.2 -9.4 -19-29.2 -36 -36 -36 -36 -36 -36 -36 -36-33.9-19.7 -8.9 -2.4 1.5 3.3 4.9 4.6 4.9 4.6 4.5 4.2 3.8 

2.4 2.2 1.8 1.1 0.4-3.8-5.3-11.3-21.3-32.2 -36 -36 -36 -36 -36 -36 -36 -36 -36-27.7-13.8-6.5-0.7 1.4 3.2 3.8 4.2 4.1 4.1 3.8 3.6 

2.2 1.9 1.2 0.7 -0.7 -4.5 -7.6-12.8 -23-33.5 -36 -36 -36 -36 -36 -36 -36 -36 -36-31.6 -17 -9 -3.8 -0.5 1.8 2.6 3.3 3.3 3.8 3.3 3.3 

2.1 1.6 0.9 0.4 -0.9 -4.9 -8 -13-23.6-33.3 -36 -36 -36 -36 -36 -36 -36 -36 -36-32.9-18.3 -11 -4.3 -1.8 0.8 1.9 3.1 2.9 3.2 3.2 3.2 

1.8 1.5 0.8 -0.5 -0.9 -4.9 -8-12.5-22.3-31.2 -36 -36 -36 -36 -36 -36 -36 -36 -36-31.8-17.9-11.3 -5.7 -2.4 0.4 1.2 2.2 2.6 2.9 2.8 2.9 

1.6 1.4 0.8 -0.5 -0.9 -4.6 -7.7 -11 -19-26.7 -36 -36 -36 -36 -36 -36 -36 -36 -36-28.2-16.9-10.4 -6 -2.5 -0.5 0.9 1.9 2.4 2.6 2.6 2.8 

1.6 1.2 0.8 0.4 -0.7 -3.8 -6.6 -8.7-15.8-21.9-30.6-33.9 -36 -36 -36 -36 -36 -36-32.8 -23-15.4 -9.1 -5.5 -2.4 -0.5 0.8 1.6 2.1 2.4 2.4 2.6 

1.6 1.4 0.7 0.4-0.5-3.2 -5-7.3-11.5-17.1-22.7-26.3-33.9 -36 -36 -36 -36-28.7-25.3-17.5-11.8-6.7-4.2-1.9-0.5 0.8 1.6 1.9 2.2 2.2 2.5 

1.6 1.4 0.8 0.7-0.5-2.4-3.8-5.6-9.1-12.1-17.1-19.2-24.7-28.1-29.2-27.7-27.1-21.4-17.3-12.5-8.7-5.5-3.2-1.5-0.4 0.9 1.6 1.8 2.1 2.2 2.4 

1.6 1.5 0.9 0.9-0.4-1.6-2.6-3.8-6.5-8.4-11.5-12.1-16.8-18.2 -19-16.8-17.3-14.7-12.3-9.1-6.2-3.8-2.2-0.8 0.4 0.9 1.6 1.8 2.1 2.1 2.2 

1.6 1.6 1.1 1.1 0.4 -0.7 -1.6 -2.2 -4.2 -5.5 -7.7 -7.6 -11-12.4-12.8-12.3 -11 -9.8 -8.4 -6.5 -3.9 -2.6 -1.2 -0.5 0.5 1.1 1.6 1.6  2 2.1 2.1 

1.8 1.6 1.2 1.5 0.5 -0.5 -0.7 -0.8 -2.4 -3.2 -4.8 -4.5 -6.7 -7.9 -8.2 -7.4 -6.5 -5.9 -4.9 -3.9 -2.2 -1.4 -0.7 0.4 0.8 1.2 1.6 1.6 1.9 1.9 2.1 

1.8 1.6 1.4 1.6 0.9 0.5 -0.5 -0.5 -1.4 -1.5 -2.9 -2.4 -4.2 -4.5 -5.5 -4.3 -3.8 -3.5 -3.2 -1.9 -1.1 -0.5 0.4 0.7 1.1 1.4 1.6 1.8 1.9 1.9 2.1 

1.8 1.8 1.5 1.8 1.2 1.1 0.4 0.4 -0.5 -0.7 -1.5 -0.7 -2.2 -2.6 -2.6 -2.6 -2.2 -1.9 -1.4 -1.1 -0.5 0.4 0.5 0.9 1.4 1.5 1.8 1.8 1.9 1.9 2.1 

1.8 1.8 1.6 2.1 1.4 1.2 0.9 1 0.4 0.4 0.5 0.4 -0.9 -1.4 -1.5 -1.4 -0.9 -0.8 -0.5 -0.5 0.4 0.5 0.9 1.1 1.5 1.6 1.8 1.8 1.9 1.9 1.9 

1.8 1.9 1.6 2.1 1.5 1.5 1.1 1.5 0.7 0.8 0.4 0.8 -0.5 -0.7 -0.7 -0.7 -0.5 -0.5 -0.4 0.4 0.8 0.9 1.2 1.4 1.6 1.6 1.8 1.8 1.9 1.9 1.9 

1.9 1.9 1.6 2.2 1.6 1.6 1.4 1.6 1.1 1.1 0.8 1.2 0.4 0.4 0.4 0.4 0.4 0.5 0.8 0.8 1.1 1.2 1.5 1.5 1.6 1.6 1.9 1.8 1.9 1.8 1.9 

1.8 1.9 1.6 2.2 1.6 1.9 1.5 1.9 1.4 1.5 1.1 1.8 0.8 0.5 0.5 0.5 0.8 0.9 1.1 1.1 1.4 1.5 1.6 1.6 1.8 1.6 1.9 1.8 1.9 1.8 1.8 

Test Set: 105mm HEAT 
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APPENDIX G: SOURCE CODE (C++ NETWORK) 

Copyright © 1997 Jeff May 

#include <iostream.h> 

#include <fstream.h> 

#include <iomanip.h> 

#include <time.h> 

#include <math.h> 

#include <stdlib.h> 

const float STEP = .1; 

const int INPUTSIZE = 1085; 

const int OUTPUTSIZE = 5; 

const int ROW = 35; 

const int COLUMN = 31; 

void displaylnput (float[]); 

void display(fioatQ); 

void makeRandomWeights(float[] [INPUTSIZE]); 

void display (float[][TNPUTSIZE]); 

void mySummation(float[][INPUTSIZE], floatQ, float[]); 

float sigmoid(float); 
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void buildlnput(ifstream, float[]); 

void feedForward(float[], float[][INPUTSIZE], floatQ, float[][INPUTSIZE], float[]); 

float computeError(float[], floatQ, float[]); 

void calcHiddenError(float[], float[][INPUTSIZE], float[], float[]); 

void changeWeights(float[], floatQ, float[][INPUTSIZE], const int size); 

mainO 

{ 

float weightLayerl[INPUTSIZE][INPUTSIZE] = {{0}, {0}}; 

float inputLayer2[INPUTSIZE] = {0}; 

float weightLayer2[OUTPUTSIZE][INPUTSIZE] = {{0},{0}}; 

float outputLayer[OUTPUTSIZE] = {0}; 

float t60mm[INPUTSIZE] = {0}; 

float t81mm[INPUTSIZE] = {0}; 

float tarty[INPUTSIZE] = {0}; 

float theat[INPUTSIZE] = {0}; 

float t3_5in[INPUTSIZE] = {0}; 

float *ammo[OUTPUTSIZE] = {t60mm, t81mm, tarty, theat, t3_5in}; 

float output60[OUTPUTSIZE] = {1,0,0,0,0}; 

float output81[OUTPUTSIZE] = {0,1,0,0,0}; 

float outputarty[OUTPUTSIZE] = {0,0,1,0,0}; 

float outputheat[OUTPUTSIZE] = {0,0,0,1,0}; 
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float output3_5in[OUTPUTSIZE] = {0,0,0,0,1}; 

float *expected[OUTPUTSIZE] = {output60, output81, outputarty, outputheat, output3_5in}; 

ifstream mortarl ("60mm.dat", ios::in); 

ifstream mortar2("81mm.dat", ios::in); 

ifstream arty("arty.dat", ios::in); 

ifstream heat("heat.dat", ios::in); 

ifstream rocket("3-5in.dat", ios::in); 

ofstream layerlweights("data/weightl.dat", ios::out); 

ofstream Iayer2weights("data/weight2.dat", ios::out); 

ofstream errorData("data/error.dat", ios::out); 

float errorl = 0; 

float totalError = 0; 

const float ACCEPTABLE_ERROR = 1.0; 

float outputError[OUTPUTSIZE] = {0}; 

float hiddenError[INPUTSIZE] = {0}; 

int counter = 0; 

ifstream *infiles[OUTPUTSIZE] = {mortarl, mortar2, arty, heat, rocket}; 

for(int m = 0; m < OUTPUTSIZE; m++) { 

buildlnput(infiles[m] ,ammo[m]); 

} 
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makeRandomWeights(weightLayer 1); 

makeRandomWeights(weightLayer2); 

do{ 

counter = counter + 1; 

cout« "counter " « counter « endl; 

totalError = 0; 

for(int e = 0; e < OUTPUTSIZE; e++) { 

feedForward(ammo[e], weightLayerl, inputLayer2, weightLayer2, outputLayer); 

errorl = computeError(outputLayer, expected[e], outputError); 

calcHiddenError(outputError, weightLayer2, inputLayer2, hiddenError); 

changeWeights(outputError, inputLayer2, weightLayer2, OUTPUTSIZE); 

changeWeights(hiddenError, inputLayer2, weightLayerl, INPUTSIZE); 

totalError = errorl + totalError; 

} 

cout «"totalError" «totalError « endl; 

errorData «totalError « endl; 

} while(totalError > ACCEPTABLE_ERROR); 

errorData.close(); 

for(int r = 0; r < INPUTSIZE; r++) { 

for(int c = 0; c < INPUTSIZE; c++) { 

layerlweights « weightLayerl[r][c] « ""; 
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} 

layer 1 weights « endl; 

} 

layer lweights.close(); 

for(int rr = 0; rr < OUTPUTSIZE; rr++) { 

for(int cc = 0; cc < INPUTSIZE; cc++) { 

layer2weights « weightLayer2[rr][cc] «""; 

} 

layer2weights « endl; 

} 

layer2weights.close(); 

return(O); 

} 

void   feedForward(float   inputl[],   float   weight 1[][INPUTSIZE],   float   input2[],   float 

weight2[][INPUTSIZE],float output[]) 

{ 

float tempSum = 0; 

mySummation(weightl, inputl, input2); 
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for(int j = 0; j < INPUTSIZE; j ++){ 

tempSum = input2 ö ]; 

input2[j] = sigmoid(tempSum); 

} 

mySummation(weight2, input2, output); 

tempSum = 0; 

for(int 1 = 0; 1 < INPUTSIZE; 1 ++){ 

tempSum = outputfl]; 

output[l] = sigmoid(tempSum); 

} 

cout «"outputLayer" « endl; 

display (output); 

} 

float sigmoid(float sum){ 

float answer = 0; 

answer = (1 / (1 + (exp (-sum)))); 

return(answer); 

} 
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void makeRandomWeights(float Array[] [INPUTSIZE]) 

{ 

srand(time(NULL)); 

for(int r = 0; r < INPUTSIZE; r++){ 

for(int c = 0; c < INPUTSIZE; c++){ 

Array[r][c] = (1.0 *((rand() % 3) -1)); 

} 

} 

void mySummation(float weight[][INPUTSIZE], float input[], float output[]) 

{ 

float temp[INPUTSIZE][INPUTSIZE]; 

int sum = 0; 

for(int r = 0; r < INPUTSIZE; r++){ 

for(int c = 0; c < INPUTSIZE; c++){ 

temp[r][c] = weight[r][c] * input[c]; 

} 

} 
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for(int i = 0; i < INPUTSIZE; i++){ 

for(int j = 0; j < INPUTSIZE; j++){ 

sum = temp[i]D] + svun; 

} 

output[i] = sum; 

sum = 0; 

} 

} 

void display(float Array [] [INPUTSIZE]) 

{ 

for(int r = 0; r < INPUTSIZE; r++){ 

for(int c = 0; c < INPUTSIZE; c++){ 

cout« setw(3) « Array[r][c]; 

} 

cout« endl; 

} 

cout« endl; 

} 
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void display(float Array[]) 

{ 

for(int i = 0; i < OUTPUTSIZE; i++){ 

cout« Array [i] « ""; 

} 

cout« endl; 

} 

void displayInput(float ArrayQ) 

{ 

int column = 0; 

int end = 0; 

for (int r = 0; r < ROW; r++){ 

end = column + COLUMN; 

for (; column < end; column++){ 

cout« Array [column] «""; 

} 

cout« endl; 

} 

cout« endl; 
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void buildlnput(ifstream infile, float ammoArrayQ) 

{ 

infile.open(); 

cout«"in build input" « endl; 

for(int i = 0; i < INPUTSIZE; i++) { 

infile » ammo Array [i]; 

} 

infile.close(); 

} 

float computeError(float actual[], float expected[], float errorQ) 

{ 

float result = 0; 

float temp = 0; 

for(int i = 0; i < OUTPUTSIZE; i++) { 

error[i] = expected[i] - actualfi]; 

if(error[i] < 0) { 

temp = error[i] * -1.0; 

} 
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else { 

temp = error [i]; 

} 

result = temp + result; 

} 

return(result); 

} 

void calcHiddenError(float outError[], float weight2[][INPUTSIZE], float input2[], float 

hidden[]) 

{ 

for(int c = 0; c < INPUTSIZE; c++) { 

for(int r = 0; r < OUTPUTSIZE; r++) { 

hidden[c] = (outError[r] * weight2[r][c]) + hidden[c]; 

} 

} 

for(int i = 0; i < INPUTSIZE; i++) { 

hidden[i] = hidden[i] * (input2[i] * (1 - input2[i])); 

} 

} 
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void changeWeights(float error[], float input[], float weight[][INPUTSIZE], const int ROW) 

{ 

float temp = 0; 

//cout«"in changweights" « endl; 

for(intr = 0;r<ROW;r++){ 

for(int c = 0; c < INPUTSIZE; c++) { 

temp = STEP * error[r] * input[c]; 

weight[r][c] = weight[r][c] + temp; 

} 

} 

} 
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